CS 412 — Introduction to Machine Learning (UIC)

Lecture 11

Instructor: Aadirupa Saha

February 25, 2025

Scribe(s): Harsh Kothari

Overview

In the last lecture, we covered the following main topics:
1. Gradient Descent Convergence Analysis
2. Stochastic Gradient Descent + Convergence Guarantees
3. Batched SGD

4. Variants of Gradient Descent
This lecture focuses on:
1. Primer on ”Vector Algebra” & Margin Computation
2. Understanding Hyperplanes and Their Properties
3. Support Vector Machine Conditions (SVM)

4. Optimization Objective for SVM

1 Primer on ”’Vector Algebra” & Margin Computation

1.1 Geometry & Vector Algebra Primer
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Figure 2: Two vector at alpha angle .

Problem Statement

Prove in 2D, assuming polar representations of vectors v and w:
v = (||v]| cos by, ||v]|sin ;)
w = (||w]| cos ba, ||w]||sin H2)
where the angle difference is defined as:

01291—92

Hint: You need to apply the cosine angle difference identity:

cos(fy — 02) = cos by cos b + sin Oy sin Oy
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Solution

Step 1: Compute the Dot Product

The dot product of two vectors in 2D is given by:

VW = Ug Wy + UyWy

Substituting the given vector components:

v w = ([|[v][cos 01)(|[wl]| cos ) + (|| ][ sin 61)([|w|| sin )

Factor out the magnitudes ||v||||w]|:
v - w = ||v]|||w]|(cos 0; cos 02 + sin 0 sin b)

Step 2: Apply the Cosine Angle Difference Identity

From trigonometry, we know that:

cos(01 — 62) = cos 0 cos by + sin 0 sin Oy

Using this identity in our equation:

v w = [[v[|[|w][cos(61 — 62)

Since we defined oo = 67 — 65, we rewrite it as:
v-w = ||vl]|||w]| cos a

Conclusion

This confirms the well-known dot product formula in terms of magnitudes and angles:

v-w = ||v]|||w]| cos «

11-3



Thus, we have successfully proved the relation using the given polar representations of the vectors.

2 Understanding Hyperplanes and Their Properties

2.1 Definition of a Hyperplane

A hyperplane is a geometric concept that represents a subspace of one dimension less than its ambient space.
In different dimensions:

* In 2D, a hyperplane is a straight line.
* In 3D, a hyperplane is a flat plane.

* In d-dimensions, a hyperplane is a (d-1)-dimensional subspace that divides the space into two halves.

2.2 Equation of a Hyperplane in 2D

A hyperplane (which is a line in 2D) can be represented as:

mxy +b=x9 (D
Rearranging this equation:
mxy—2o+b=0 2)
To express this in matrix form:
(m =1 b)(z1221)=0 3)

This equation matches the general hyperplane equation:
wlix+b=0 4)
where:
« w = (m — 1b) is the normal vector.
* x = (w1 @2 1) represents a point on the hyperplane.

* b is the bias term that shifts the hyperplane.

2.3 General Form of a Hyperplane in d-Dimensions
In higher dimensions, a hyperplane is defined as:
wix+b=0 &)
which expands to:
(w1 wa ... Wq b)(mm;xd):o (6)
where:
* w = (wq, wa, ..., wy) is the normal vector.
* x = (1,22, ..., ¥q) represents a point on the hyperplane.

¢ b is the bias term.



+ Positive Class (+1)
- Negative Class (-1)
5[ = Decision Boundary

Seems like a good classifier
Since separates the pts correctly

Separates by MAX-MARGIN.

Figure 3: A hyperplane in 2D space which divide + and - classes .

2.4 Orthogonality of the Normal Vector

Mathematical Explanation
The normal vector w is perpendicular to the hyperplane. Consider two points x; and X3 that lie on the
hyperplane:

wlixi+b=0 @)
wlixg+b=0 ®)

Subtracting these equations:
wl(x] —%3) =0 ©)

Since x; — X2 is a vector along the hyperplane, this equation states that w is perpendicular to all such
vectors.
Geometric Intuition

* A hyperplane divides space into two regions.
* The normal vector w points in the direction perpendicular to the hyperplane.

* Any movement along the hyperplane does not change the dot product with w, reinforcing its orthogo-
nality.

* This is similar to how a ceiling fan’s rod is perpendicular to the floor—any movement along the floor
does not affect its height.

2.5 Key Takeaways

* In 2D, a hyperplane is a straight line; in 3D, it is a flat plane; in d-dimensions, it is a (d-1)-
dimensional subspace.
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* The general equation of a hyperplane is w’ x + b = 0.
* The normal vector w is always perpendicular to the hyperplane.

* Hyperplanes play a key role in classification, optimization, and geometry.

3 Support Vector Machines (SVMs)

3.1 Introduction to SVMs

Support Vector Machines (SVMs) are a type of supervised learning model used for classification and
regression tasks. They are particularly powerful in binary classification problems.

3.2 Problem Setup
Assume we are given a set of data points:
D = (x4, y) Y, (10)
where:
e 2; € R (each data point is a d-dimensional vector).
* y; € —1,1 (labels are either +1 (positive class) or -1 (negative class)).

* N represents the total number of data points.

3.3 Objective of SVM

The goal of SVM is to find a classifier that separates the positive and negative labels as much as possible.
This is done by constructing a decision boundary (hyperplane) that maximizes the margin between the two
classes.

SVM Decision Boundary with Highlighted Support Vectors

~

~< X Support Vectors

Feature 2

Feature 1

Figure 4: Hyperplane with Support Vectors .



3.4 Understanding Linearly and Non-Linearly Separable Data
3.4.1 Linearly Separable Data

A dataset D is considered linearly separable if there exists a hyperplane that perfectly separates the data
points into two distinct classes:

» Positive class (+1) on one side.
* Negative class (-1) on the other side.

In such cases, a linear classifier (such as an SVM with a linear kernel) can correctly classify the data.

3.4.2 Examples of Linearly and Non-Linearly Separable Data
Example 1: Linearly Separable Data

* A straight line (or hyperplane in higher dimensions) can perfectly separate the two classes.
* The red line in the first diagram represents such a decision boundary.

¢ SVM with a linear kernel is effective here.

Example 2: Non-Linearly Separable Data (Encircled Cluster)
* A single straight line cannot separate the two classes.
* The data forms a circular pattern, requiring a non-linear decision boundary.

* A Kkernel trick (e.g., RBF kernel in SVM) can help map the data to a higher-dimensional space
where separation is possible.

Example 3: Non-Linearly Separable Data (Wavy Pattern)
* The decision boundary is highly complex and nonlinear.
* A simple hyperplane is insufficient to separate the classes.

* A more advanced technique such as polynomial or RBF kernel SVM, neural networks, or deep
learning models may be needed for classification.

Linearly separable Not linearly separable

A linear decision boundary that Mo linear decision boundary thal separates
separales the two classes exists Nondinear the two classes perfectly exists

Linear
boundary

]
®/m

X,
2| @ o/M -
] |
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Xy

Figure 5: Linearly Separable and Non Linear Separable Hyperplane .




3.5 Finding a Max-Margin Classifier Using SVM Objectives
3.5.1 How to Find a Max-Margin Classifier?

* The goal is to find a decision boundary (hyperplane) that maximizes the margin between two
classes.

* This problem is solved using Support Vector Machines (SVMs).

3.5.2 Case 1: Linearly Separable Dataset
* Assume the dataset D is linearly separable.
e We consider a 3D case (d = 3) for visualization.

* The data points from two different classes are separated by a hyperplane.

3.5.3 Understanding the Hyperplane
A hyperplane is defined as:
wix+b=0 (11)
where:
* w is the normal vector to the hyperplane.
* x is a data point.
* b is the bias term.

The hyperplane linearly separates the dataset into two classes.

3.5.4 Max-Margin Concept in SVM

* SVM finds the hyperplane that maximizes the margin (distance between the nearest positive and
negative points).

 The margin is the distance d and d’ in the visualization.

3.5.5 C(lassification Conditions

The classification rule based on the hyperplane equation:

* For positive class (y,, = +1):
wlix, +b>0 (12)

* For negative class (v, = —1):
wlix, +b<0 (13)

* This ensures that all positive points lie above the hyperplane and negative points lie below the
hyperplane.

11-8



Figure 6: Hyperplane in 3D space .

3.6 Key Takeaways
1. SVM finds the optimal hyperplane that maximizes the margin.

2. The hyperplane equation is given by:
wix+b=0 (14)

3. Points on either side of the hyperplane satisfy the conditions:

o wi'x, +b>0fory, = +1.
. wan+b<0foryn: —1.

4. Linearly separable data can be classified using a linear kernel SVM.
5. Non-linearly separable data requires kernel tricks to transform data into a higher-dimensional space.

6. SVM with a maximum margin ensures better generalization to unseen data.

4 Optimization Objective for SVM

4.1 Finding the Distance of a Point from the Hyperplane

T

The distance of a point x, from the hyperplane w* x = 0 is given by:

| (s — x)"'w]

d= 5)

[wl

This formula is derived using the projection of the vector (x, — x) onto w.

4.2 Objective: Maximizing the Margin

The goal is to find w that maximizes the margin d. This translates to the following optimization problem:

T _
max W —x)| (16)
weR4e beR ]W\

subject to:
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|WT$* +bl=1 (17)

The constraint ensures that the distance of support vectors from the hyperplane is 1.

4.3 Reformulating the Optimization Problem

Since w!'2 + b = 0 defines the hyperplane, we can simplify:

|w? (x % —x)| = |wlz % +b| (18)

and from our scaling assumption:

]wT:r* +b=1 (19)

Thus, the final optimization problem simplifies to:

1 2
i — 20
b 2‘“" (20)
subject to:
yi(wla; +b) > 1, Vi. (21)

4.4 Optimal Choice of w in SVM
The final SVM optimization problem is given by:

Lo o
i — 22
mip 51w 22
subject to:
yn(Wle, +b)>1, ¥Yn=1,...,N (23)

At the optimal solution w, at least one constraint must be active for some n, meaning:
Yn(Wla, +b) = 1. (24)

4.5 Justification: Why Must at Least One Constraint Be Active?

If all constraints were strictly greater than 1, i.e.,

yn(WTxn +b)>1, Vn (25)

then we could rescale w and b by a small factor (say, dividing them by some constant « > 1) while still
satisfying all constraints. This would decrease |w|?, contradicting the fact that we found the optimal solution.
Therefore, at least one data point must lie exactly on the margin, meaning:

Yn (Wl z, +0) = 1. (26)

These points that satisfy the equality constraint are called support vectors because they determine the optimal
margin.
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4.6 Key Takeaways
* The SVM optimization problem is formulated as a quadratic minimization problem.
* The constraint ensures that all points are classified correctly while maximizing the margin.

* Support vectors lie exactly on the margin and play a critical role in defining the decision boundary.

The final SVM objective ensures a balance between margin maximization and correct classification.

* This results in a convex optimization problem, which can be solved using Lagrange multipliers.

5 Hard Margin SVM and Its Solution

The Hard Margin SVM assumes that the given dataset is perfectly separable by a hyperplane, meaning there
exists a decision boundary where all positive and negative samples can be classified without misclassification.
The optimization problem is formulated as:

1
min —|w|? (27)
weRd beR 2
subject to:
yn(Wlz, +b)>1, ¥Yn=1,2,....N (28)

where is minimized to achieve a maximum margin hyperplane, and the constraint ensures all training points
are correctly classified under the assumption of perfect separability. To solve this constrained optimization
problem, we use Lagrange multipliers and the Karush-Kuhn-Tucker (KKT) conditions

Next Lecture

The next lecture will cover the following topics:

(i) KKT condition and strong duality to solve hard-margin SVMs
(i1) Support vector points for hard-margin SVM

(iii) Non-Linear Separable data -Kernel methods.

References:

* Avanti, A. (Stanford University). Lecture Notes on Machine Learning: Support Vector Machines.
Stanford Machine Learning Course.
A concise and structured introduction to Support Vector Machines (SVM) with practical insights and
applications.

* Vapnik, V. (1998). Statistical Learning Theory. Wiley.
This book provides the theoretical foundation for Support Vector Machines (SVM) and statistical
learning.

* Cristianini, N., & Shawe-Taylor, J. (2000). An Introduction to Support Vector Machines and Other
Kernel-based Learning Methods. Cambridge University Press.
A practical introduction to SVMs, covering both linear and non-linear classification methods.
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* Burges, C. J. C. (1998). A Tutorial on Support Vector Machines for Pattern Recognition. Data Mining
and Knowledge Discovery, 2(2), 121-167.
A detailed tutorial explaining the mathematics and implementation of SVMs.

* Boyd, S., & Vandenberghe, L. (2004). Convex Optimization. Cambridge University Press.
A foundational text on convex optimization, including Lagrange multipliers and KKT conditions, which
are used in solving SVM optimization problems.
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