CS 412 — Introduction to Machine Learning (UIC)	February 25, 2025
Lecture 11	
Instructor: Aadirupa Saha	Scribe(s): Harsh Kothari

Overview

In the last lecture, we covered the following main topics:

- 1. Gradient Descent Convergence Analysis
- 2. Stochastic Gradient Descent + Convergence Guarantees
- 3. Batched SGD
- 4. Variants of Gradient Descent

This lecture focuses on:

- 1. Primer on "Vector Algebra" & Margin Computation
- 2. Understanding Hyperplanes and Their Properties
- 3. Support Vector Machine Conditions (SVM)
- 4. Optimization Objective for SVM

1 Primer on "Vector Algebra" & Margin Computation

1.1 Geometry & Vector Algebra Primer

Figure 1: A traingle with thetha angle between b and h.

• Basic trigonometric relationships:

$$\cos \theta = \frac{b}{h}$$
$$\sin \theta = \frac{l}{h}$$
$$\tan \theta = \frac{l}{h}$$

1.2 Dot Product& Projection

Figure 2: Two vector at alpha angle.

Problem Statement

Prove in 2D, assuming polar representations of vectors v and w:

$$\mathbf{v} = (||\mathbf{v}||\cos\theta_1, ||\mathbf{v}||\sin\theta_1)$$

$$\mathbf{w} = (||\mathbf{w}||\cos\theta_2, ||\mathbf{w}||\sin\theta_2)$$

where the angle difference is defined as:

$$\alpha = \theta_1 - \theta_2$$

Hint: You need to apply the cosine angle difference identity:

$$\cos(\theta_1 - \theta_2) = \cos\theta_1 \cos\theta_2 + \sin\theta_1 \sin\theta_2$$

Solution

Step 1: Compute the Dot Product

The dot product of two vectors in 2D is given by:

$$\mathbf{v} \cdot \mathbf{w} = v_x w_x + v_y w_y$$

Substituting the given vector components:

$$\mathbf{v} \cdot \mathbf{w} = (||\mathbf{v}|| \cos \theta_1)(||\mathbf{w}|| \cos \theta_2) + (||\mathbf{v}|| \sin \theta_1)(||\mathbf{w}|| \sin \theta_2)$$

Factor out the magnitudes $||\mathbf{v}|| ||\mathbf{w}||$:

$$\mathbf{v} \cdot \mathbf{w} = ||\mathbf{v}|| ||\mathbf{w}|| (\cos \theta_1 \cos \theta_2 + \sin \theta_1 \sin \theta_2)$$

Step 2: Apply the Cosine Angle Difference Identity

From trigonometry, we know that:

$$\cos(\theta_1 - \theta_2) = \cos\theta_1 \cos\theta_2 + \sin\theta_1 \sin\theta_2$$

Using this identity in our equation:

$$\mathbf{v} \cdot \mathbf{w} = ||\mathbf{v}||||\mathbf{w}||\cos(\theta_1 - \theta_2)$$

Since we defined $\alpha = \theta_1 - \theta_2$, we rewrite it as:

$$\mathbf{v} \cdot \mathbf{w} = ||\mathbf{v}||||\mathbf{w}|| \cos \alpha$$

Conclusion

This confirms the well-known dot product formula in terms of magnitudes and angles:

$$\mathbf{v} \cdot \mathbf{w} = ||\mathbf{v}||||\mathbf{w}|| \cos \alpha$$

Thus, we have successfully proved the relation using the given polar representations of the vectors.

2 Understanding Hyperplanes and Their Properties

2.1 Definition of a Hyperplane

A hyperplane is a geometric concept that represents a subspace of one dimension less than its ambient space. In different dimensions:

- In **2D**, a hyperplane is a **straight line**.
- In 3D, a hyperplane is a flat plane.
- In **d-dimensions**, a hyperplane is a **(d-1)-dimensional subspace** that divides the space into two halves.

2.2 Equation of a Hyperplane in 2D

A hyperplane (which is a line in 2D) can be represented as:

$$mx_1 + b = x_2 \tag{1}$$

Rearranging this equation:

$$mx_1 - x_2 + b = 0 (2)$$

To express this in matrix form:

$$(m -1 b)(x_1 x_2 1) = 0$$
 (3)

This equation matches the general hyperplane equation:

$$\mathbf{w}^T \mathbf{x} + b = 0 \tag{4}$$

where:

- $\mathbf{w} = (m 1 b)$ is the **normal vector**.
- $\mathbf{x} = (x_1 \ x_2 \ 1)$ represents a **point on the hyperplane**.
- b is the **bias term** that shifts the hyperplane.

2.3 General Form of a Hyperplane in d-Dimensions

In higher dimensions, a hyperplane is defined as:

$$\mathbf{w}^T \mathbf{x} + b = 0 \tag{5}$$

which expands to:

$$\begin{pmatrix} w_1 & w_2 & \dots & w_d & b \end{pmatrix} \begin{pmatrix} x_1 & x_2 & \vdots & x_d \end{pmatrix} = 0$$
 (6)

where:

- $\mathbf{w} = (w_1, w_2, ..., w_d)$ is the **normal vector**.
- $\mathbf{x} = (x_1, x_2, ..., x_d)$ represents a point on the hyperplane.
- b is the bias term.

Figure 3: A hyperplane in 2D space which divide + and - classes.

2.4 Orthogonality of the Normal Vector

Mathematical Explanation

The normal vector w is perpendicular to the hyperplane. Consider two points x_1 and x_2 that lie on the hyperplane:

$$\mathbf{w}^T \mathbf{x}_1 + b = 0 \tag{7}$$

$$\mathbf{w}^T \mathbf{x}_2 + b = 0 \tag{8}$$

Subtracting these equations:

$$\mathbf{w}^T(\mathbf{x}_1 - \mathbf{x}_2) = 0 \tag{9}$$

Since $x_1 - x_2$ is a vector **along the hyperplane**, this equation states that w is perpendicular to all such vectors.

Geometric Intuition

- A hyperplane divides space into two regions.
- The normal vector w points in the direction perpendicular to the hyperplane.
- Any movement along the hyperplane does not change the dot product with w, reinforcing its orthogonality.
- This is similar to how a ceiling fan's rod is perpendicular to the floor—any movement along the floor does not affect its height.

2.5 Key Takeaways

• In 2D, a hyperplane is a straight line; in 3D, it is a flat plane; in d-dimensions, it is a (d-1)-dimensional subspace.

- The general equation of a hyperplane is $\mathbf{w}^T \mathbf{x} + b = 0$.
- The normal vector w is always perpendicular to the hyperplane.
- Hyperplanes play a key role in classification, optimization, and geometry.

3 Support Vector Machines (SVMs)

3.1 Introduction to SVMs

Support Vector Machines (SVMs) are a type of supervised learning model used for classification and regression tasks. They are particularly powerful in binary classification problems.

3.2 Problem Setup

Assume we are given a set of **data points**:

$$D = (x_i, y_i)_{i=1}^N \tag{10}$$

where:

- $x_i \in \mathbb{R}^d$ (each data point is a d-dimensional vector).
- $y_i \in -1, 1$ (labels are either +1 (positive class) or -1 (negative class)).
- N represents the total number of data points.

3.3 Objective of SVM

The goal of SVM is to find a classifier that separates the positive and negative labels as much as possible. This is done by constructing a decision boundary (hyperplane) that maximizes the margin between the two classes.

Figure 4: Hyperplane with Support Vectors.

3.4 Understanding Linearly and Non-Linearly Separable Data

3.4.1 Linearly Separable Data

A dataset D is considered **linearly separable** if there exists a **hyperplane** that perfectly separates the data points into two distinct classes:

- Positive class (+1) on one side.
- Negative class (-1) on the other side.

In such cases, a linear classifier (such as an SVM with a linear kernel) can correctly classify the data.

3.4.2 Examples of Linearly and Non-Linearly Separable Data

Example 1: Linearly Separable Data

- A straight line (or hyperplane in higher dimensions) can perfectly separate the two classes.
- The **red line** in the first diagram represents such a **decision boundary**.
- SVM with a linear kernel is effective here.

Example 2: Non-Linearly Separable Data (Encircled Cluster)

- A single straight line cannot separate the two classes.
- The data forms a circular pattern, requiring a non-linear decision boundary.
- A kernel trick (e.g., RBF kernel in SVM) can help map the data to a higher-dimensional space where separation is possible.

Example 3: Non-Linearly Separable Data (Wavy Pattern)

- The decision boundary is highly complex and nonlinear.
- A simple **hyperplane** is insufficient to separate the classes.
- A more advanced technique such as **polynomial or RBF kernel SVM**, **neural networks**, **or deep learning models** may be needed for classification.

Figure 5: Linearly Separable and Non Linear Separable Hyperplane.

3.5 Finding a Max-Margin Classifier Using SVM Objectives

3.5.1 How to Find a Max-Margin Classifier?

- The goal is to find a decision boundary (hyperplane) that maximizes the margin between two classes.
- This problem is solved using **Support Vector Machines (SVMs)**.

3.5.2 Case 1: Linearly Separable Dataset

- Assume the dataset D is linearly separable.
- We consider a **3D case** (d = 3) for visualization.
- The data points from two different classes are separated by a hyperplane.

3.5.3 Understanding the Hyperplane

A hyperplane is defined as:

$$\mathbf{w}^T \mathbf{x} + b = 0 \tag{11}$$

where:

- w is the **normal vector** to the hyperplane.
- x is a data point.
- b is the bias term.

The **hyperplane linearly separates** the dataset into two classes.

3.5.4 Max-Margin Concept in SVM

- **SVM finds the hyperplane that maximizes the margin** (distance between the nearest positive and negative points).
- The **margin** is the distance d and d' in the visualization.

3.5.5 Classification Conditions

The classification rule based on the hyperplane equation:

• For positive class $(y_n = +1)$:

$$\mathbf{w}^T \mathbf{x}_n + b > 0 \tag{12}$$

• For negative class $(y_n = -1)$:

$$\mathbf{w}^T \mathbf{x}_n + b < 0 \tag{13}$$

• This ensures that all **positive points lie above the hyperplane** and **negative points lie below the hyperplane**.

Figure 6: Hyperplane in 3D space.

3.6 Key Takeaways

- 1. SVM finds the optimal hyperplane that maximizes the margin.
- 2. The **hyperplane equation** is given by:

$$\mathbf{w}^T \mathbf{x} + b = 0 \tag{14}$$

- 3. Points on either side of the hyperplane satisfy the conditions:
 - $\mathbf{w}^T \mathbf{x}_n + b > 0$ for $y_n = +1$.
 - $\mathbf{w}^T \mathbf{x}_n + b < 0$ for $y_n = -1$.
- 4. Linearly separable data can be classified using a linear kernel SVM.
- 5. Non-linearly separable data requires kernel tricks to transform data into a higher-dimensional space.
- 6. SVM with a maximum margin ensures better generalization to unseen data.

4 Optimization Objective for SVM

4.1 Finding the Distance of a Point from the Hyperplane

The distance of a point x_* from the hyperplane $\mathbf{w}^T \mathbf{x} = 0$ is given by:

$$d = \frac{|(\mathbf{x}_* - \mathbf{x})^T \mathbf{w}|}{|\mathbf{w}|} \tag{15}$$

This formula is derived using the **projection** of the vector $(\mathbf{x}_* - \mathbf{x})$ onto \mathbf{w} .

4.2 Objective: Maximizing the Margin

The goal is to find w that maximizes the margin d. This translates to the following optimization problem:

$$\max_{\mathbf{w} \in \mathbb{R}^d, b \in \mathbb{R}} \quad \frac{|\mathbf{w}^T(\mathbf{x}_* - \mathbf{x})|}{|\mathbf{w}|}$$
(16)

subject to:

$$|\mathbf{w}^T x_* + b| = 1 \tag{17}$$

The constraint ensures that the distance of **support vectors** from the hyperplane is 1.

4.3 Reformulating the Optimization Problem

Since $\mathbf{w}^T x + b = 0$ defines the hyperplane, we can simplify:

$$|\mathbf{w}^T(\mathbf{x} * -\mathbf{x})| = |\mathbf{w}^T x * +b| \tag{18}$$

and from our scaling assumption:

$$|\mathbf{w}^T x_* + b| = 1 \tag{19}$$

Thus, the final optimization problem simplifies to:

$$\min_{\mathbf{w},b} \quad \frac{1}{2} |\mathbf{w}|^2 \tag{20}$$

subject to:

$$y_i(\mathbf{w}^T x_i + b) \ge 1, \quad \forall i.$$
 (21)

4.4 Optimal Choice of w in SVM

The final SVM optimization problem is given by:

$$\min_{\mathbf{w},b} \quad \frac{1}{2}|\mathbf{w}|^2 \tag{22}$$

subject to:

$$y_n(\mathbf{w}^T x_n + b) \ge 1, \quad \forall n = 1, \dots, N$$
 (23)

At the **optimal solution** w, at least **one constraint must be active** for some n, meaning:

$$y_n(\mathbf{w}^T x_n + b) = 1. (24)$$

4.5 Justification: Why Must at Least One Constraint Be Active?

If all constraints were strictly greater than 1, i.e.,

$$y_n(\mathbf{w}^T x_n + b) > 1, \quad \forall n \tag{25}$$

then we could rescale \mathbf{w} and b by a small factor (say, dividing them by some constant $\alpha > 1$) while still satisfying all constraints. This would **decrease** $|\mathbf{w}|^2$, contradicting the fact that we found the **optimal solution**. Therefore, at least one data point must **lie exactly on the margin**, meaning:

$$y_n(\mathbf{w}^T x_n + b) = 1. (26)$$

These points that satisfy the equality constraint are called **support vectors** because they determine the **optimal margin**.

4.6 Key Takeaways

- The SVM optimization problem is formulated as a quadratic minimization problem.
- The constraint ensures that all points are classified correctly while maximizing the margin.
- Support vectors lie exactly on the margin and play a critical role in defining the decision boundary.
- The final SVM objective ensures a balance between margin maximization and correct classification.
- This results in a convex optimization problem, which can be solved using Lagrange multipliers.

5 Hard Margin SVM and Its Solution

The **Hard Margin SVM** assumes that the given dataset is perfectly separable by a hyperplane, meaning there exists a decision boundary where all positive and negative samples can be classified without misclassification. The optimization problem is formulated as:

$$\min_{\mathbf{w} \in \mathbb{R}^d, b \in \mathbb{R}} \quad \frac{1}{2} |\mathbf{w}|^2 \tag{27}$$

subject to:

$$y_n(\mathbf{w}^T x_n + b) \ge 1, \quad \forall n = 1, 2, \dots, N$$
 (28)

where is minimized to achieve a **maximum margin hyperplane**, and the constraint ensures all training points are correctly classified under the assumption of perfect separability. To solve this constrained optimization problem, we use **Lagrange multipliers** and the **Karush-Kuhn-Tucker** (**KKT**) **conditions**

Next Lecture

The next lecture will cover the following topics:

- (i) KKT condition and strong duality to solve hard-margin SVMs
- (ii) Support vector points for hard-margin SVM
- (iii) Non-Linear Separable data -Kernel methods.

References:

- Avanti, A. (Stanford University). Lecture Notes on Machine Learning: Support Vector Machines.
 Stanford Machine Learning Course.
 - A concise and structured introduction to Support Vector Machines (SVM) with practical insights and applications.
- Vapnik, V. (1998). Statistical Learning Theory. Wiley.
 This book provides the theoretical foundation for Support Vector Machines (SVM) and statistical learning.
- Cristianini, N., & Shawe-Taylor, J. (2000). An Introduction to Support Vector Machines and Other Kernel-based Learning Methods. Cambridge University Press.
 - A practical introduction to SVMs, covering both linear and non-linear classification methods.

- Burges, C. J. C. (1998). A Tutorial on Support Vector Machines for Pattern Recognition. Data Mining and Knowledge Discovery, 2(2), 121–167.

 A detailed tutorial explaining the mathematics and implementation of SVMs.
- Boyd, S., & Vandenberghe, L. (2004). *Convex Optimization*. Cambridge University Press. A foundational text on convex optimization, including Lagrange multipliers and KKT conditions, which are used in solving SVM optimization problems.