
CS 412 — Introduction to Machine Learning (UIC) March 06, 2025

Lecture 15
Instructor: Aadirupa Saha Scribe(s): Rithish Reddy Chichili

Overview

In the last lecture we covered the following topics:

• Soft-Margin SVM

• SVM Regression

• Perceptron

This lecture mainly focuses on the Perceptron algorithm, its theoretical properties, and its extensions to handle
non-linearly separable data. The topics covered include:

• Perceptron Mistake Bounds

• Perceptron w/o perfect linear separator

• Kernel Perceptron

1 Online Classification Learning Setting

Before defining the Perceptron algorithm, we introduce the basic setting for Online Classification Learning.

1.1 Dataset Definition

We assume we have a dataset D consisting of N training examples:

D = {(xi, yi)}Ni=1

where; each xi is a feature vector in d-dimensional space:

xi ∈ Rd

Each label yi belongs to {+1,−1} (binary classification problem).

1.2 Goal of the Perceptron

The goal is to learn a function f(x) that classifies points correctly:

f(x) = sign(wTx+ b)

where: w is the weight vector, b is the bias term, sign(·) outputs either +1 or −1 based on whether the input
is positive or negative.

15-1

2 Perceptron Algorithm

The Perceptron Algorithm is an online learning algorithm that updates the weight vector whenever a
misclassification occurs.

2.1 Initialization

We start by initializing the weight vector:
w1 = 0 ∈ Rd

This means that initially, we assume no prior knowledge about the classification boundary.

Algorithm Steps

For each time step t = 1, 2, . . . , the perceptron follows these steps:

Algorithm 2.1:

Input: Data point from Rd

Output: Weight wt+1

Initialize a new data point xt ∈ Rd

ŷt = sign(wT
t xt + b)

if ŷt == yt:
wt+1 = wt

else:
wt+1 = wt + ytxt

return wt+1

Given for every data point(Input), update weights only if expected output is not equal to actual output.

15-2

3 Perceptron Learning Algorithm: Update Rule

In the previous section, we introduced the perceptron algorithm. Here, we describe the update rule when the
perceptron makes a mistake.

3.1 Perceptron Update Rule

At each time step t, the algorithm makes a prediction:

ŷt = sign(wT
t xt + b)

If ŷt = yt, the prediction is correct, and no update is needed. If ŷt ̸= yt, the prediction is incorrect, meaning
the perceptron made a mistake. In this case, the weight update follows:

wt+1 =

{
wt + xt, if yt = +1

wt − xt, if yt = −1

This update rule ensures that misclassified points move the decision boundary in the correct direction.

4 Mistake Bound for Linearly Separable Data

4.1 Definition of Linear Separability

We now analyze the number of mistakes the perceptron makes before converging when the data is linearly
separable.
Let the dataset D consist of N training samples:

D = {(x1, y1), . . . , (xN , yN)}

where:xi ∈ Rd represents feature vectors.yi ∈ {+1,−1} represents binary class labels.
A dataset is linearly separable if there exists a weight vector w∗ ∈ Rd such that:

yn(w
∗xn) ≥ 0, ∀n ∈ N

Here, w∗ is called the perfect separator.

4.2 Definition of the Margin

If a dataset is linearly separable, we define the margin as:

γ = min
xn∈D

|w∗xn|
||xn||

The margin measures how well-separated the two classes are.A larger margin means fewer mistakes by the
perceptron.

15-3

5 Perceptron Mistake Bound

In the previous section, we introduced the concept of a linearly separable dataset and the definition of the
margin γ. Now, we discuss the mistake bound theorem, which establishes an upper limit on the number of
mistakes the perceptron algorithm makes before converging.

Theorem 5.1: Perceptron Mistake Bound Theorem

The theorem states that if the dataset D is linearly separable with margin γ, then the number of mistakes
the perceptron algorithm makes is at most:

M ≤ 1

γ2

subject to:
∀n, ||xn||2 ≤ 1, ||w∗||2 ≤ 1

where:||xn||2 ≤ 1 ensures that all input feature vectors are normalized.||w∗||2 ≤ 1 ensures that the
optimal weight vector is bounded.
This bound shows that the perceptron converges in a finite number of updates.

Exercise 5.1: Proof of Generalization of the Theorem

In some cases, we relax the assumptions and obtain a more general mistake bound.
Practice Question: A more general statement of Theorem 1 assumes:

||w∗||2 ≤ 1, ||xn||2 ≤ 1, ∀n ∈ [N]

Using this assumption, the number of mistakes is bounded by:(Try to prove this)

M ≤ ||w∗||22max ||xn||22
γ2

This bound accounts for datasets where the feature vectors may have varying magnitudes.

15-4

Graphical Representation of the Margin

To illustrate the concept of margin-based separation, we present the following diagram:

Key Insights from the Diagram:The hyperplane w∗x = 0 is the optimal separating boundary.The margin
γ represents the minimum distance between the closest point and the hyperplane.The larger the margin,
the fewer mistakes the perceptron will make.The red, green, and purple lines represent different possible
hyperplanes. The maximum margin classifier is the most robust.

Remarks on Perceptron Mistake Bound

Remark 1: Tightening the Bound

From the previous theorem, we introduced the perceptron mistake bound:

M ≤ 1

γ2

where γ is the margin of the dataset. However, in practice, the margin γ can be upper-bounded by γmax,
leading to:

1

γ2max

≤ 1

γ2

Thus, the theorem holds for any separating hyperplane wTx = 0, but the tightest bound is achieved for the
maximum-margin classifier.

15-5

Remark 2: The Role of Hinge Loss

When the dataset is not perfectly separable, we introduce hinge loss:

ξn = max [0, γ − yn(w
∗xn)]

where:ξn represents the distance beyond the margin for a given data point.In a perfectly separable dataset,
ξn = 0,∀n.Hinge loss is widely used in Support Vector Machines (SVMs).

Proof of Perceptron Mistake Bound Theorem

Now, we analyze why the perceptron mistake bound holds by examining weight updates over time.

5.1 Update Rule and Alignment with w∗

Consider a time step t where the perceptron makes a mistake. The weight update rule states:

wt+1 = wt + ytxt

Taking the dot product with the optimal weight vector w∗, we obtain:

wT
t+1w

∗ = wT
t w

∗ + ytx
T
t w

∗

Since we assume that the dataset is separable, we know:

ytx
T
t w

∗ ≥ γ

Thus, substituting this into our equation:

wT
t+1w

∗ ≥ wT
t w

∗ + γ

Interpretation: This means that after each mistake, wt+1 is more aligned with w∗, since the inner product
increases by at least γ. This ensures convergence over time.

5.2 Proof of Claim 1: Growth of ||w||

To bound the number of mistakes, we analyze the norm of the weight vector.

||wt+1||2 = ||wt + ytxt||2

Expanding this:

||wt+1||2 = ||wt||2 + ||xt||2 + 2ytw
T
t xt

Since ||xt||2 = 1 and ytw
T
t xt < 0 (because the perceptron made a mistake), we get:

15-6

||wt+1||2 ≤ ||wt||2 + 1

Summing over all M mistakes:

||wM+1||2 ≤ M

Further Implications of Claim 1

5.3 Extending Claim 1

From the previous analysis, we established:

wT
t+1w

∗ ≥ wT
t w

∗ + γ

By applying this iteratively over multiple updates:

wT
tM+1w

∗ ≥ wT
tM

w∗ + γ

Summing up over M mistakes:

wT
M+1w

∗ ≥ wT
1 w

∗ +Mγ

Since we initialize with w1 = 0, we obtain:

wT
M+1w

∗ ≥ Mγ

This directly ties the number of mistakes M to the margin γ.

5.4 Bounding ||w||: Claim 2

We now establish a second claim that helps us bound the norm of w.
Claim 2: The norm of the weight vector satisfies:

||wt+1||2 ≤ ||wt||2 + 1

Proof: Expanding the norm squared after the weight update:

||wt+1||2 = ||wt + ytxt||2

Expanding using the squared norm property:

||wt+1||2 = ||wt||2 + ||xt||2 + 2ytw
T
t xt

Since ||xt||2 = 1 and we know that 2ytwT
t xt < 0 due to a mistake, we get:

15-7

||wt+1||2 ≤ ||wt||2 + 1

Summing over all M mistakes:

||wM+1||2 ≤ M

5.5 Final Combination of Bounds

Now, combining Claim 1 and Claim 2, we obtain:

Mγ ≤ ||wM+1|| · ||w∗||

Using our previous bound:

||wM+1|| ≤
√
M

Since ||w∗|| = 1, we get:

Mγ ≤
√
M

Rearranging:

√
M ≤ 1

γ

Squaring both sides:

M ≤ 1

γ2

Thus, we have proved the perceptron mistake bound theorem.

Final Steps in Proof of Perceptron Mistake Bound

5.6 Bounding ||w|| Further

We continue from the previous derivation, where we established:

||wtM+1||2 ≤ ||wtM ||2 + 1

Applying this iteratively over M mistakes:

||wtM+1||2 ≤ ||wtM−1||2 + 1 + 1

Continuing the expansion:

15-8

||wtM+1||2 ≤ ||w1||2 +M

Since we initialized with w1 = 0, we obtain:

||wtM+1||2 ≤ M

Taking the square root on both sides:

||wtM+1|| ≤
√
M

5.7 Final Combination of Claims 1 and 2

From our earlier derivation, we had established:

Mγ ≤ wT
tM+1w

∗

Applying the Cauchy-Schwarz inequality:

wT
tM+1w

∗ ≤ ||wtM+1|| · ||w∗||

Since ||w∗|| = 1, we simplify:

Mγ ≤ ||wtM+1||

Using our previous bound:

||wtM+1|| ≤
√
M

we substitute:

Mγ ≤
√
M

5.8 Final Derivation of the Mistake Bound

Dividing both sides by γ:

√
M ≤ 1

γ

Squaring both sides:

M ≤ 1

γ2

Thus, we have proven that the number of mistakes the perceptron makes is upper-bounded by:

15-9

M ≤ 1

γ2

6 Handling Non-Linearly Separable Data

In previous sections, we analyzed the perceptron algorithm under the assumption that the dataset is linearly
separable. However, in real-world scenarios, data may not be perfectly separable by a single hyperplane.

6.1 Understanding the Non-Linearly Seperable Case

Definition: If a dataset contains overlapping points from different classes, no single hyperplane can separate
them perfectly. Instead, we aim to find a best possible separating hyperplane.
Let u∗ be the optimal separating hyperplane, which ”almost” separates the data:

u∗Tx = 4γ

where:γ represents the margin.u∗x = 0 defines the decision boundary.Some points lie on the correct side
but within the margin, while others are misclassified.

Graphical Interpretation

Key Observations from the Diagram:The green hyperplane represents a possible separating boundary.The
red circles denote misclassified points.Yellow points are correctly classified but lie within the margin.The
margin defines an L2-ball of radius 1:

15-10

{x ∈ Rd | ||x||2 ≤ 1}

6.2 Misclassification Error in Terms of Hinge Loss

Since some points are misclassified, we introduce hinge loss to quantify the error:

ξn = max
[
0, γ − yn(u

∗xn)
]
, ∀n ∈ [N]

where:ξn represents how far a point deviates from correct classification.If u∗xn satisfies yn(u∗xn) ≥ γ, then
ξn = 0 (correct classification).If yn(u∗xn) < γ, then ξn > 0, indicating misclassification.

6.3 Example Calculation

Consider a misclassified point x1, where:

yn(u
∗xn) = −4γ

Then, the hinge loss is:

ξn = max
[
0, γ − (−4γ)

]
= 5γ

This shows that the hinge loss increases as the classification margin decreases.

Further Analysis of Hinge Loss and Mistake Bound

6.4 Detailed Computation of Hinge Loss

In the previous section, we introduced the concept of hinge loss, which accounts for points that are either
misclassified or fall inside the margin.
The hinge loss for a given point xn is defined as:

ξn = max
[
0, γ − yn(u

∗xn)
]

We now analyze this for specific points.
Case 1: Consider the first misclassified point x1, where:

y1(u
∗x1) = −4γ

Then, the hinge loss is:

ξ1 = max
[
0, γ − (−4γ)

]
= max[0, 5γ] = 5γ

Case 2: For another misclassified point x2, we have:

15-11

y2(u
∗x2) = −γ

Then, its hinge loss is:

ξ2 = max
[
0, γ − (−γ)

]
= max[0, 2γ] = 2γ

Remark: If the classifier u∗ were a perfect separator with margin γ, then:

ξn = 0, ∀n ∈ [N]

which implies no misclassification.

6.5 Mistake Bound for linearly Non-Separable Data

We now extend the perceptron mistake bound to the case where the data is not perfectly separable.

Theorem 6.1: Mistake Bound for linearly Non-Separable Case

Let D = {(xi, yi)}Ni=1 be a dataset where:

• xn ∈ Rd, yn ∈ {+1,−1}.

• ||xn|| ≤ 1, meaning all data points are bounded.

• There exists a hyperplane u∗ ∈ Rd such that:

ξn = max
[
0, γ − yn(u

∗xn)
]

represents the hinge loss for each point.

Implication: The hinge loss measures how well-separated the data points are with respect to the classifier
u∗x = 0.

Bounding the Number of Mistakes

The number of mistakes made by the perceptron algorithm depends on the hinge loss across all datapoints:

N∑
n=1

ξn

The bound on the total number of mistakes is given by:

M ≤ 1

γ2
+ 2

N∑
n=1

ξn
γ

where: 1
γ2 is the mistake bound in the separable case.

∑ ξn
γ accounts for errors due to misclassified points.

15-12

General Perceptron Mistake Bound for linearly Non-Separable Data

6.6 Total Hinge Loss and Perceptron Mistake Bound

Previously, we established the mistake bound for separable data. However, for linearly non-separable cases,
the number of mistakes made by the perceptron algorithm can be related to the total hinge loss over the dataset.
Key insights: If the dataset is perfectly separable, the total hinge loss is:

M∑
t=1

ξt = 0

leading to an upper bound of:

M ≤ 1

γ2

If the dataset is not perfectly separable, the hinge loss contributes additional errors:

M ≤ 1

γ2
+ 2

N∑
n=1

ξn
γ

6.7 Interpretation of the Mistake Bound

The mistake bound provides an upper limit on the number of times the perceptron algorithm updates its
weight vector before it stops making mistakes.
Perfect separation (ξn = 0): The perceptron will correctly classify all points eventually. Linearly
Non-separable case (ξn > 0): The additional hinge loss term accounts for mistakes.
Thus, the total hinge loss over all N points in D affects the total mistake bound.

6.8 Key Observations

If a datapoint xn was misclassified by u∗ (i.e., ξn > 0), then it is also likely to be misclassified by the
perceptron algorithm. The perceptron algorithm will eventually learn to classify correctly if ξn = 0 for all n.

15-13

6.9 Practice Problem

Exercise 6.1: Proof of Mistake Bound for Linearly Non-Seperable Case Theorem

Exercise: Complete the proof of Mistake Bound for Linearly Non-Seperable Case Theorem by showing
that:

M ≤ 1

γ2
+ 2

N∑
n=1

ξn
γ

Hint:

• Consider the weight update rule at each iteration.

• Use Claim 1: If the perceptron makes a mistake at time step t, then;

wT
t+1u

∗ ≥ wT
t u

∗ + γ − ξt

• Use Claim 2: Bounding the norm of w;

||wt+1||2 ≤ ||wt||2 + 1

• Analyze the cumulative sum over M mistakes.

6.10 Key Takeaways

The mistake bound increases as a function of hinge loss. If the dataset is nearly separable, the number of
mistakes remains close to 1

γ2 . If hinge loss is large, mistakes increase.

7 Kernel Perceptron

7.1 Motivation for Non-Linear Classification

The perceptron algorithm works well for linearly separable data, but what if the data is not linearly separable?
Question: How can we modify the perceptron algorithm in another way to handle non-linearly separable
data?

7.2 Feature Transformation

One approach is to map data from a low-dimensional space Rd to a higher-dimensional space RD where a
separating hyperplane exists.
Let:

φ : Rd → RD, where D >> d

15-14

We seek a hyperplane that separates the transformed data:

w∗φ(x) = 0

Key Insight: Instead of working directly in high dimensions, we use the kernel trick to compute inner
products efficiently.

Kφ(xi, xj) = φ(xi)
Tφ(xj)

This avoids explicitly computing φ(x), reducing computational complexity.

8 Kernel Trick: Transforming to Higher Dimensions

8.1 Motivation for Feature Mapping

The perceptron algorithm in its standard form can only handle linearly separable data. However, real-world
data is often not linearly separable in the given feature space.
Solution: We map the input data from a low-dimensional space Rd to a higher-dimensional space RD, where
a linear separation becomes possible.

φ : Rd → RD, where D >> d

This transformation allows us to find a new hyperplane in the transformed space:

wTφ(x) = 0

8.2 Formal Definition of Feature Mapping

Consider a dataset:

D = {(xi, yi)}Ni=1

where xi ∈ Rd and yi ∈ {+1,−1}.
The goal is to find a non-linear mapping φ(x) such that the transformed data is linearly separable by a
hyperplane:

wTφ(x) = 0

8.3 Kernel Function and Inner Product Trick

Instead of explicitly computing the feature transformation φ(x), we use the kernel function:

Kφ : Rd × Rd → R

15-15

where:

Kφ(x1, x2) = φ(x1)
Tφ(x2)

This allows us to work in the higher-dimensional space without explicitly computing φ(x), which avoids
computational inefficiency.

8.4 Key Question: Can We Use the Classifier Without Knowing φ?

A key insight from the kernel trick is that we can compute decision boundaries in the transformed space
without explicitly calculating φ(x). The decision rule is:

ŷ = sign
(T∑

t=1

ytKφ(xt, x)
)

This means that even if we do not explicitly know φ(x), we can still classify data using just the kernel
function.

Kernel Perceptron Algorithm

8.5 Weight Vector Representation

In the standard perceptron, the weight vector is updated using:

wT+1 =
T∑
t=1

ytxt + w1

where the sum represents all misclassified points that contributed to the final weight vector. However, in the
kernel perceptron, we extend this idea to feature space:

wT+1 =
T∑
t=1

ytφ(xt) + w1

where φ(x) is a feature transformation that maps the input to a higher-dimensional space.

8.6 Prediction Rule in Kernel Perceptron

The perceptron predicts a label ŷ(x) based on:

ŷ(x) = sign
(
wT
T+1φ(x)

)
Substituting the weight representation:

ŷ(x) = sign
(T∑

t=1

ytφ(xt)
Tφ(x)

)
Since computing φ(x) explicitly can be computationally expensive, we leverage the kernel function:

15-16

ŷ(x) = sign
(T∑

t=1

ytKφ(xt, x)
)

where Kφ(xt, x) = φ(xt)
Tφ(x) computes the inner product in the higher-dimensional feature space.

8.7 Intuition Behind Kernel Perceptron

In classical perceptron, the decision boundary is learned directly in the original feature space.In kernel
perceptron, the decision boundary is implicitly computed in a transformed high-dimensional space without
explicitly computing φ(x).This makes it feasible to learn non-linear decision boundaries efficiently.
Example Scenario: Suppose we receive a new data point x ∈ Rd: 1. Step 1: Map the input x to a
high-dimensional feature space using φ(x). 2. Step 2: Compute the prediction using the kernel function
instead of explicitly computing φ(x).
Key Benefit: We never need to explicitly compute φ(x), making kernel perceptron an efficient method for
handling non-linearly separable data.

Final Remarks on Kernel Perceptron

8.8 Efficient Classification using Kernel Function

Once the Kernel Perceptron has been trained, predicting the label of a new point x can be efficiently
performed using:

ŷ(x) = sign

(
T∑
t=1

ytKφ(xt, x)

)
where Kφ(xt, x) is the kernel function, which computes the similarity between a training example xt and
the new data point x.

8.9 Key Observation

The remarkable advantage of the kernel perceptron is:

We can make predictions without explicitly computing φ(x), thanks to the kernel function!

Mathematically, this means:

ŷ(x) = sign

(
T∑
t=1

ytφ(xt)
Tφ(x)

)
= sign

(
T∑
t=1

ytKφ(xt, x)

)
Thus, we can use Kernel Methods to implicitly work in high-dimensional spaces without computing the
transformation φ(x) explicitly.

15-17

8.10 Practical Benefits of Kernel Perceptron

Avoids Curse of Dimensionality: Instead of computing high-dimensional transformations φ(x), we only
evaluate kernel functions.Efficient Training and Prediction: Predictions rely only on support vectors
(misclassified points).Handles Non-Linear Data: By using appropriate kernels (e.g., polynomial or
Gaussian), the perceptron can classify non-linearly separable data.

Next Lecture:

• Perceptron as single-layer NN

• Winnow’s Algorithm

• Learning from expert advice

References

• Probabilistic Machine Learning-An Introduction by Kevin P. Murphy (Sections 10.2.5,13.2)

• Machine Learning Basics by Yingyu Liang (Lecture 3: Perceptron)

15-18

	Online Classification Learning Setting
	Dataset Definition
	Goal of the Perceptron

	Perceptron Algorithm
	Initialization

	Perceptron Learning Algorithm: Update Rule
	Perceptron Update Rule

	Mistake Bound for Linearly Separable Data
	Definition of Linear Separability
	Definition of the Margin

	Perceptron Mistake Bound
	Update Rule and Alignment with w*
	Proof of Claim 1: Growth of ||w||
	Extending Claim 1
	Bounding ||w|| : Claim 2
	Final Combination of Bounds
	Bounding ||w|| Further
	Final Combination of Claims 1 and 2
	Final Derivation of the Mistake Bound

	Handling Non-Linearly Separable Data
	Understanding the Non-Linearly Seperable Case
	Misclassification Error in Terms of Hinge Loss
	Example Calculation
	Detailed Computation of Hinge Loss
	Mistake Bound for linearly Non-Separable Data
	Total Hinge Loss and Perceptron Mistake Bound
	Interpretation of the Mistake Bound
	Key Observations
	Practice Problem
	Key Takeaways

	Kernel Perceptron
	Motivation for Non-Linear Classification
	Feature Transformation

	Kernel Trick: Transforming to Higher Dimensions
	Motivation for Feature Mapping
	Formal Definition of Feature Mapping
	Kernel Function and Inner Product Trick
	Key Question: Can We Use the Classifier Without Knowing ?
	Weight Vector Representation
	Prediction Rule in Kernel Perceptron
	Intuition Behind Kernel Perceptron
	Efficient Classification using Kernel Function
	Key Observation
	Practical Benefits of Kernel Perceptron

