
CS 412 — Introduction to Machine Learning (UIC) March 15, 2025

Lecture 16
Instructor: Aadirupa Saha Scribe(s): Nemi Chakrawarthy Bhupathiraju/Simran Mishra

Overview

In the last lecture, we covered the following main topics:

1. Perceptron Mistake Bounds

This lecture focuses on:

1. Winnow Algorithm

2. Mistake Bound for Perceptron (Review)

1 Revisiting Perceptron

1.1 Online Learning Setup

Algorithm 1.1: Online Perceptron Update Rule

1: At each round t:
2: Receive input xt ∈ Rd

3: Predict ŷt = sign(w⊤
t xt)

4: Observe true label yt ∈ {−1,+1}
5: if ŷt ̸= yt then
6: Update: wt+1 ← wt + ytxt
7: else
8: wt+1 ← wt

9: end if

1.2 Mistake Bound for Perceptron

Theorem 1.1: Mistake Bound for Linearly Separable Case

Suppose there exists a hyperplane w∗ such that:

w∗Tx = 0

and it separates all data points with margin γ. Then the total number of mistakes made by the Perceptron
algorithm is bounded by:

#mistakes ≤
∥w∗∥22 ·max

x
∥x∥22

γ2

16-1

Assumption 1. Assume x ∈ [0, 1]d, so ∥x∥22 ≤ d. For example, if d = 50, then ∥x∥22 ≤ 50.

Remark 1. The mistake bound improves (decreases) with:

1. Smaller ∥x∥ norm (e.g., binary or normalized inputs)

2. Larger margin γ

1.3 Monotone Disjunction Labeling and Example

Theorem 1.2: Monotone Disjunction Model

In binary classification with input vectors x ∈ {0, 1}d, a common labeling function is the monotone
disjunction, defined as:

y = xi1 ∨ xi2 ∨ · · · ∨ xik

This represents a logical OR over a subset of input variables, where no negation is involved. The function
outputs 1 if at least one of the relevant variables is 1, and 0 otherwise.

The binary OR function behaves as follows:

x1 x2 x1 ∨ x2
1 1 1
1 0 1
0 1 1
0 0 0

Example: Small Monotone Disjunction with Relevant Features
Let the number of features be d = 5, and suppose only x1 and x4 are relevant for determining the label.

• Each instance x ∈ {0, 1}5

• Labeling function:
y = x1 ∨ x4

Sample Inputs and Outputs:
x y = x1 ∨ x4

(1, 0, 1, 0, 0) 1 ∨ 0 = 1
(0, 1, 1, 0, 0) 0 ∨ 0 = 0
(0, 1, 1, 1, 0) 0 ∨ 1 = 1
(0, 0, 0, 0, 0) 0 ∨ 0 = 0

Interpretation: The label depends only on the presence of 1 in the relevant positions (here x1 and x4),
ignoring the rest. This illustrates sparse logical concept learning.

16-2

2 Winnow Algorithm for r-Monotone Disjunctions

In this section, we study a simple version of the Winnow algorithm, a multiplicative weight update method
suitable for learning sparse Boolean functions like monotone disjunctions. The key insight is that the algorithm
does not need to know the target sparsity level r in advance.

2.1 Winnow Algorithm Description

Algorithm 2.1: Winnow Algorithm with Parameter β

Initialization: Set w1 = 1 ∈ Rd

Input: Data stream {xt}Tt=1 ⊂ {0, 1}d, threshold d, learning rate β > 0

For each round t = 1, 2, . . . , T :

1. Receive xt ∈ {0, 1}d

2. Predict:

ŷt =

{
1 if w⊤

t xt ≥ d

0 otherwise

3. Observe true label yt ∈ {0, 1}

4. If ŷt ̸= yt, update each coordinate:

wt+1(i) =


wt(i)(1 + β) if xt(i) = 1 and yt = 1
wt(i)
1+β if xt(i) = 1 and yt = 0

wt(i) if xt(i) = 0

5. Else: wt+1 = wt

Note: When β = 1, the updates double or halve the weights.

2.2 Intuition Behind Winnow (β = 1)

Case 1: Mistake on Positive Class

ŷt = 0, yt = 1 (model predicted 0, should be 1)

w⊤
t xt < d⇒ Need to increase the score of xt

Let A = {i | xt(i) = 1}. Then:∑
i∈A

wt(i) < d (under-predicting the score)

Update: For all i ∈ A:
wt+1(i) = 2 · wt(i)⇒

∑
i∈A

wt+1(i) = 2 · w⊤
t xt

16-3

This increases the score to move it toward correct classification.

Case 2: Mistake on Negative Class

ŷt = 1, yt = 0 (model predicted 1, should be 0)

w⊤
t xt ≥ d⇒ Need to decrease the score of xt

Let A = {i | xt(i) = 1}. Then: ∑
i∈A

wt(i) ≥ d

Update: For all i ∈ A:

wt+1(i) =
wt(i)

2
⇒ Score gets halved: w⊤

t+1xt =
w⊤
t xt
2

2.3 Mistake Bound Comparison

Winnow Mistake Bound
MWinnow ≤ 3r(1 + log d)

• r: number of relevant features

• d: total number of features

Example: For r = 2, d = 100,
MWinnow ≤ 3 · 2 · log2 100 ≈ 12

Perceptron Mistake Bound

MPerceptron = O

(
∥w∗∥2 ·maxx ∥x∥2

γ2

)
Remarks:

• If ∥x∥2 ≤ 1 and γ = 1/
√
d, then:

MPerceptron = O(d)

• As γ → 0, this bound worsens significantly.

2.4 Why Use Winnow?

When is Winnow better than Perceptron?

• The target function depends on only a small number of features (i.e., r ≪ d)

• The input vectors are binary and sparse

• High-dimensional feature space where linear separators still exist

Conclusion:
Winnow is highly effective in sparse Boolean settings where only a few features are truly relevant. Its
logarithmic dependence on d makes it scalable and preferable to Perceptron when margin is small or unknown.

16-4

3 Proof of Winnow Mistake Bound (for β = 1)

We now provide a proof for the mistake bound of the Winnow algorithm, considering the special case when
the multiplicative update parameter β = 1.

3.1 Case 1: When yt = 1 but ŷt = 0

This case occurs when the true label is positive, but the algorithm incorrectly predicts a negative label. This
happens precisely when:

w⊤
t xt < d

Observation 1: At least one of the active weights wt(i) (where xt(i) = 1) will be doubled after each such
mistake. This follows directly from the multiplicative update rule of the Winnow algorithm, where the weights
of active features are multiplied by 1 + β when a false negative occurs.

Observation 2: If for any coordinate i ∈ [d], xt(i) = 0, then:

• The weight wt(i) is not updated at that round.

• Only the weights corresponding to active coordinates xt(i) = 1 are updated (i.e., doubled).

Furthermore, once the sum w⊤
t xt ≥ d is achieved, the prediction will correctly switch to ŷt = 1 and no

further mistakes of this type will occur for that input.
Thus, the algorithm’s goal is to increase the weighted sum enough through doubling to eventually predict
correctly.

Tracking the Number of Updates: Let ℓi denote the total number of times the weight wt(i) for coordinate
i has been increased (i.e., doubled).
Initially:

w1(i) = 1

After ℓi updates:

wt(i) = 2ℓi

However, since the prediction threshold is d, we have:

2ℓi ≤ d ⇒ ℓi ≤ log2 d

Thus, the number of times any coordinate’s weight can double is at most log2 d.

Conclusion for Case 1:

• Each relevant feature i can contribute at most log2 d mistakes.

• If there are r relevant features, the total number of mistakes of the form yt = 1 but ŷt = 0 is bounded
by:

r log2 d

Thus, the total number of mistakes for this case is O(r log d).

16-5

3.2 Case 2: When yt = −1 but ŷt = +1

This case corresponds to making a mistake on a negative label: the true label is yt = −1, but the algorithm
incorrectly predicts ŷt = +1.
This happens when:

w⊤
t xt ≥ d

Observation 1: Initially at t = 1:
w1(i) = 1 for all i ∈ [d]

Thus, the total initial weight is:

d∑
i=1

w1(i) = d

Observation 2: Suppose at time t, the algorithm makes a mistake with yt = −1 and ŷt = +1.
Thus:

w⊤
t xt =

d∑
i=1

wt(i)xt(i) ≥ d

After this mistake:

• For every i such that xt(i) = 1, the weight is updated as:

wt+1(i) =
wt(i)

2

• For coordinates with xt(i) = 0, weights remain unchanged.

Thus, the new weighted sum becomes:

w⊤
t+1xt =

d∑
i=1

wt+1(i)xt(i) =
1

2

∑
i:xt(i)=1

wt(i) =
1

2
w⊤
t xt

Since w⊤
t xt ≥ d before the update, we get:

w⊤
t+1xt ≤

d

2

Thus, after a mistake on a negative label, the total weighted score decreases by at least d/2.

16-6

Observation 3: Conversely, when making a mistake on a positive example (yt = +1, ŷt = −1):

• Active weights are doubled:
wt+1(i) = 2wt(i)

• Thus, the new weighted sum becomes:

w⊤
t+1xt = 2w⊤

t xt

• Since before the mistake w⊤
t xt < d, it follows that:

w⊤
t+1xt < 2d

Thus, after a mistake on a positive example, the total weighted sum increases by at most d.

Combining Observations: Define:

• Pt = number of mistakes made on positive examples (yt = +1, ŷt = −1),

• Qt = number of mistakes made on negative examples (yt = −1, ŷt = +1).

From Observations 2 and 3:

0 <
d∑

i=1

wt(i) ≤ d+ Pt × d−Qt ×
d

2

Dividing by d:

0 < 1 + Pt −
Qt

2

Rearranging:

Qt

2
< 1 + Pt ⇒ Qt < 2(1 + Pt) ⇒ Qt ≤ 2 + 2Pt

From Case 1, we know:

Pt ≤ r log2 d

Substituting:

Qt ≤ 2 + 2r log2 d

Thus, the total number of mistakes is:

Pt +Qt ≤ r log2 d+ 2 + 2r log2 d = 2 + 3r log2 d

Final Conclusion: Thus, the total number of mistakes made by Winnow satisfies:

O(r log d)

This matches the earlier mistake bound result.

16-7

4 Next Lecture:

The next topic will be:

• AdaBoost: Combining weak learners to design a strong learner.

References

1. Winnow: CS 4540 - Link

2. Mistake Bound: CS260 -Link

3. Winnow Example -Link

16-8

https://example.com/winnow-cs4540
https://example.com/mistake-bound-cs260
https://example.com/winnow-example

	Revisiting Perceptron
	Online Learning Setup
	Mistake Bound for Perceptron
	Monotone Disjunction Labeling and Example

	Winnow Algorithm for r -Monotone Disjunctions
	Winnow Algorithm Description
	Intuition Behind Winnow (= 1)
	Mistake Bound Comparison
	Why Use Winnow?

	Proof of Winnow Mistake Bound (for = 1)
	Case 1: When yt = 1 but t = 0
	Case 2: When yt = -1 but t = +1

	Next Lecture:

