
CS 412 — Introduction to Machine Learning (UIC) March 18, 2025

Lecture 17
Instructor: Aadirupa Saha Scribe(s): Gabriel Zhang

Overview

In the last lecture, we covered the following main topics:

1. Winnow’s Algorithm

2. Mistake Bounds of Winnow’s Algorithm

This lecture focuses on:

1. Boosting Algorithms

2. Adaptive Boosting (AdaBoost)

3. Error Bounds of AdaBoost

1 Boosting Algorithms

Boosting is the procedure of taking many “weak” (barely-better-than-random) classifiers and combining them
into a single “strong” classifier whose accuracy is substantially higher.
For dataset D = {(x1, y1), (x2, y2), . . . , (xN , yN)}, let p ∈ ∆N , where ∆N = {q ∈ [0, 1]n |

∑N
i=1 qi; qi ≥

0}, denote the distribution over the N examples {1, 2, . . . , N}.

1.1 Weak Learning Oracle (WLO)

Definition 1 (Weak Learning Oracle). Let X be an instance space, and let H be a hypothesis class consisting
of binary classifiers h : X → {−1,+1}. Let D = {(x1, y1), . . . , (xN , yN)} be a set of labeled examples
where xi ∈ X and yi ∈ {−1,+1}. A Weak Learning Oracle (WLO) is an algorithm A such that, for any
distribution p over the training examples, it returns a hypothesis h ∈ H satisfying:

P (i)i∼p[h(xi) ̸= yi] ≤
1

2
− γ,

for some fixed constant γ ∈ (0, 12], known as the edge or advantage of the weak learner. The parameter γ is
independent of the distribution p and the sample size N , and represents the minimum advantage over random
guessing that the oracle guarantees.

Remark 1. Notice that

Ei∼p [1 (h (xi) ̸= yi)] ≤
1

2
− γ

⇐⇒Ei∼p [1{h(xi) = yi}] = 1− Ei∼p[1{h(xi) ̸= yi}] ≥ 1

2
+ γ.

17-1

1.2 Formal Description of Boosting

Algorithm 1.1: General Boosting Algorithm

Input: Training set S = {(x1, y1) , (x2, y2) , . . . , (xN , yN) , }, where yi ∈ {−1,+1} is the ground-
truth label for instance xi ∈ X .
for t = 1 to T :

Construct distribution p on {1, 2, . . . , N}
Find WLO ht : X → {−1,+1} with small error εt on p:

εt = P (i)i∼p [ht(xi) ̸= yi] ,

Output: Final classifier Hfinal

2 Adaptive Boosting Algorithm (AdaBoost)

2.1 Minimizing Exponential Loss

A key insight into boosting is that it can be interpreted as the sequential minimization of an exponential loss
function. Compared to naive 0-1 loss, the exponential loss makes it more tractable to optimize, while still
ensuring a tight relationship to the classification error. Consider the exponential loss

E(Fm) =
N∑
i=1

exp
(
− yi Fm(xi)

)
, (1)

where

Fm(x) =
m∑
ℓ=1

αℓ hℓ(x). (2)

The goal is to find parameters {αℓ} and weak classifiers {hℓ} that minimize E(Fm).
Rather than minimizing this loss over all ℓ = 1, . . . ,m at once, boosting algorithms proceed sequentially.
Suppose we have already chosen α1, . . . , αm−1 and h1, . . . , hm−1. Define

Fm−1(x) =

m−1∑
ℓ=1

αℓ hℓ(x). (3)

We now wish to find the new weak classifier hm and its coefficient αm. Notice that

E(Fm) =

N∑
i=1

exp
(
− yi Fm−1(xi)

)
exp
(
−αm yi hm(xi)

)
. (4)

For convenience, define the weights

w
(m)
i = exp

(
− yi Fm−1(xi)

)
. (5)

17-2

These weights remain fixed while we choose αm and hm. Then

E(Fm) =
N∑
i=1

w
(m)
i exp

(
−αm yi hm(xi)

)
. (6)

Since hm(xi) takes values in {−1,+1}, we may separate the training set into:

πm =
{
i | hm(xi) = yi

}
and Mm =

{
i | hm(xi) ̸= yi

}
, (7)

that is, the indices of examples correctly or incorrectly classified by hm. Hence,

exp
(
−αm yi hm(xi)

)
=

exp(−αm), if i ∈ πm,

exp(αm), if i ∈ Mm.
(8)

Therefore the loss decomposes as

E(Fm) = exp(−αm)
∑
i∈πm

w
(m)
i + exp(αm)

∑
i∈Mm

w
(m)
i . (9)

Minimizing this expression with respect to hm and αm leads to:

1. Choosing hm so that it partitions the examples into πm and Mm in a way that best reduces the weighted
error,

2. Choosing αm by solving

αm = 1
2 ln
(
1−εm
εm

)
, where εm =

∑
i∈Mm

w
(m)
i∑N

i=1w
(m)
i

. (10)

(The quantity εm is the weighted fraction of training points misclassified by hm.)

Finally, having determined αm and hm, we update the weights for the next iteration:

w
(m+1)
i = w

(m)
i exp

(
−αm yi hm(xi)

)
, (11)

and then normalize so that
∑

iw
(m+1)
i = 1. In this way, the training examples that were misclassified by hm

(i.e. those in Mm) receive increased weight, so they are emphasized more strongly in the subsequent round of
boosting.
Repeating this process over m = 1, 2, . . . ,M yields the final ensemble classifier

H(x) = Sign
(
FM (x)

)
= Sign

(M∑
ℓ=1

αℓ hℓ(x)
)
. (12)

Because a constant factor does not change the sign, one often omits the factor of 1
2 in front of the sum. This

framework shows that boosting, as implemented in AdaBoost, can be seen as stagewise minimization of the
exponential loss.
AdaBoost is exactly a prototypical example of this sequential exponential loss minimization approach.

17-3

2.2 Algorithm

Key components used within AdaBoost:

• x: Input features.

• y: True labels in {−1,+1}.

• ht(x): Weak classifier output at round t.

• εt: Weighted error of ht with respect to pt.

• αt: Weight assigned to ht, computed as αt =
1
2 ln
(
1−εt
εt

)
.

• pt(i): Weight of training example i at round t.

• Zt: Normalization constant ensuring
∑N

i=1 pt+1(i) = 1.

Step 1. Training the WLO
At round t, a weak learner produces a classifier ht : X → {−1,+1} using the current distribution pt. The
weighted error of ht is defined as

εt =

N∑
i=1

pt(i) · 1{ht(xi) ̸= yi}, (13)

where 1{·} denotes the indicator function.
Step 2. Determining the Weight αt for WLO
The goal is to update the combined classifierFt(x) = Ft−1(x)+αt ht(x), with the initial conditionF0(x) = 0.
The exponential loss is given by

E =

N∑
i=1

exp(−yi Ft(xi)). (14)

After adding the new classifier ht, the loss becomes

E =
N∑
i=1

exp
(
−yi

[
Ft−1(xi) + αt ht(xi)

])
. (15)

We define the weights at round t as

pt(i) =
exp(−yi Ft−1(xi))

Zt−1
, (16)

where Zt−1 is a normalization constant ensuring
∑N

i=1 pt(i) = 1. Then the loss can be written as

E = Zt−1

N∑
i=1

pt(i) exp(−αt yi ht(xi)). (17)

Since Zt−1 does not depend on αt, we minimize

E(αt) =

N∑
i=1

pt(i) exp(−αt yi ht(xi)). (18)

17-4

Note that yi and ht(xi) take values in {−1,+1}, so their product is either +1 (if correctly classified) or −1
(if misclassified). Therefore, we can split the sum as

E(αt) = exp(−αt)
∑

i:ht(xi)=yi

pt(i) + exp(αt)
∑

i:ht(xi)̸=yi

pt(i). (19)

Defining 1− εt =
∑

i:ht(xi)=yi
pt(i) and εt =

∑
i:ht(xi)̸=yi

pt(i), the loss becomes

E(αt) = (1− εt) exp(−αt) + εt exp(αt). (20)

To minimize E(αt), we differentiate with respect to αt and set the derivative equal to zero:

−(1− εt) exp(−αt) + εt exp(αt) = 0. (21)

Solving for αt, we obtain
exp(2αt) =

1− εt
εt

, (22)

which yields
αt =

1

2
ln
(1− εt

εt

)
. (23)

Step 3. Updating the Distribution and Normalization Constant Zt

After computing αt, we update the weights of the training examples as follows:

pt+1(i) =
pt(i) exp(−αt yi ht(xi))

Zt
, (24)

where the normalization constant Zt is defined by

Zt =

N∑
i=1

pt(i) exp(−αt yi ht(xi)). (25)

Expanding Zt using the same split as before, we have

Zt = (1− εt) exp(−αt) + εt exp(αt). (26)

Step 4. Deriving the Final Classifier
After T rounds, the prediction of the final strong classifier is given by

H(x) = Sign(
T∑
t=1

αt ht(x)). (27)

17-5

Algorithm 2.1: AdaBoost

Input: Training set S, weak learner A
Initialize: p1(i) =

1
N for all i ∈ [N]

for t = 1 to T :

Train weak classifier ht = A(S, pt).
Compute weighted error εt = Ei∼pt [1{ht(xi) ̸= yi}].
Compute αt =

1
2 ln

1−εt
εt

.
Update weights:

pt+1(i) ∝ pt(i)×

{
e−αt if ht(xi) = yi

eαt otherwise

Output: Final classifier:

H(x) = Sign

(
T∑
t=1

αtht(x)

)
.

2.3 Intuition behind AdaBoost

At any time t, we have:

• when εt → 1
2

[
almost random classifier

]
⇒ αt → 0

• when εt → 0
[

very good classifier
]
⇒ αt → ∞

αt =
1

2
ln

(
1− εt
εt

)
εt = Ei∼pt [1 {ht(xi) ̸= yi}]

Zt =

N∑
i=1

pt(i) exp (−αtyiht (xi)).

As such, we have:

• if εt → 1
2 ⇒ αt =

1
2 ln

(
1−εt
εt

)
→ 0, where we set wt on ht → 0, since ht is a nearly random classifier.

• if εt → 0 ⇒ implies γt → 1
2 , which is almost an accurate classifier. Hence, αt =

1
2 ln

(
1−εt
εt

)
→ ∞,

which almost putting infinite wt on ht.

Thus the update step suggests:

pt+1(i) ∝

pt(i) e
−αt , if ht(xi) = yi,

pt(i) e
+αt , if ht(xi) ̸= yi.

So, when αt → 0
(
⇔ mostly random classifier

)
, then

pt+1(i) ≈ pt(i).

17-6

When αt → ∞
(
⇔ very good classifier

)
, then

pt+1(i) → ∞ if misclassified, pt+1(i) → 0 if correctly classified.

2.4 Example

Figure 2 illustrates the AdaBoost algorithm using a subset of 30 data points taken from the toy classification
dataset shown in Figure 1. Here each base learners consists of a threshold on one of the input variables.
This simple classifier corresponds to a form of decision tree known as a “decision stumps”, i.e., a decision
tree with a single node. Thus each base learner classifies an input according to whether one of the input
features exceeds some threshold and therefore simply partitions the space into two regions separated by a
linear decision surface that is parallel to one of the axes.

2.5 Error Bounds

Theorem 2.1: Training Error of AdaBoost after T Rounds

After T rounds, the error rate of the final output of AdaBoost is bounded by:

1

N

N∑
i=1

1{H(xi) ̸= yi} ≤ exp

(
−2

T∑
t=1

γ2t

)
, (28)

where γt = 1
2 − εt is the edge of classifier ht. Under the weak learning assumption, the error rate is then

bounded by exp (−2Tγ2) and equal to 0 as long as T > lnN
2γ2 .

Under the weak learning assumption, this bound simplifies to exp(−2Tγ2), ensuring zero training error
when:

T >
lnN

2γ2
. (29)

Remark 2. Specifically, if minTt=1 γt = γ, then

exp
(
−2

T∑
t=1

γ2t

)
≤ exp

(
−2Tγ2

)
.

Moreover, the training error 1
N

∑N
i=1 1{H(xi) ̸= yi} can only take values in 0, 1

N , 2
N , 3

N , . . . Hence, if we
set T > lnN

2γ2 , then

exp(−2Tγ2) < exp(−2
lnN

2γ2
γ2) =

1

N
.

This means that the training error < 1
N but the only possibility is training error = 0. So after T > lnN

2γ2

rounds, the training error of AdaBoost → 0.

Proof. Let F (x) =
∑T

t=1 αtht(x) so that H(x) = Sign(F (x)). The first step is to realize 0-1 loss is bounded
by the exponential loss

1

N

N∑
i=1

1{H(xi) ̸= yi} =

N∑
i=1

p1(i)1{yiF (xi) ≤ 0} ≤
N∑
i=1

p1(i) exp(−yiF (xi)).

17-7

Figure 1: The left plot shows the synthetic classification data set with data from the two classes shown in red
and blue. On the right is a plot of the true posterior probabilities, shown on a color scale going from pure
red denoting probability of the red class is 1 to pure blue denoting probability of the red class is 0. Because
these probabilities are known, the optimal decision boundary for minimizing the misclassification rate (which
corresponds to the contour along which the posterior probabilities for each class equal 0.5) can be evaluated
and is shown by the green curve. This decision boundary is also plotted on the left-hand figure.

17-8

Figure 2: Illustration of boosting in which the base learners consist of simple thresholds applied to one or
other of the axes. Each figure shows the number m of base learners trained so far, along with the decision
boundary of the most recent base learner (dashed black line) and the combined decision boundary of the
ensemble (solid green line). Each data point is depicted by a circle whose radius indicates the weight assigned
to that data point when training the most recently added base learner. Thus, for instance, we see that points
that are misclassified by the m = 1 base learner are given greater weight when training the m = 2 base
learner.

17-9

Now notice that the update rule of pt can be written as pt+1(i) = pt(i) exp(−yiαtht(xi))/Zt where Zt is the
normalization factor. We then have

pT+1(i) = p1(i)

T∏
t=1

exp(−yiαtht(xi))

Zt
=

p1(i) exp(−yiF (xi))∏T
t=1 Zt

,

and therefore the error rate is bounded by

N∑
i=1

(
pT+1(i)

T∏
t=1

Zt

)
=

T∏
t=1

Zt.

It remains to bound each Zt:

Zt =
N∑
i=1

pt(i) exp(−yiαtht(xi))

=
∑

i:ht(xi)=yi

pt(i) exp(−αt) +
∑

i:ht(xi)̸=yi

pt(i) exp(αt)

= (1− εt) exp(−αt) + εt exp(αt)

Recall that by definition, we have:
αt =

1

2
ln
(1− εt

εt

)
. (30)

Thus, we have

exp(−αt) =

√
εt

1− εt
and exp(αt) =

√
1− εt
εt

. (31)

Substituting these terms into Zt provides us with:

Zt = (1− εt)

√
εt

1− εt
+ εt

√
1− εt
εt

. (32)

Simplify each term, we get:

(1− εt)

√
εt

1− εt
=
√

εt(1− εt) and εt

√
1− εt
εt

=
√

εt(1− εt). (33)

Therefore,
Zt = 2

√
εt(1− εt). (34)

Let us define the edge γt as:
γt =

1

2
− εt, (35)

such that
εt =

1

2
− γt and 1− εt =

1

2
+ γt. (36)

It follows that
εt(1− εt) =

(1
2
− γt

)(1
2
+ γt

)
=

1

4
− γ2t . (37)

17-10

Substituting into the expression for Zt gives

Zt = 2

√
1

4
− γ2t =

√
1− 4γ2t . (38)

By the fact that the Maclaurin series expansion of ez is

ez = 1 + z +
z2

2!
+

z3

3!
+ · · · ,

we know that:
1 + z ≤ ez.

The equality holds when z = 0. Continuing Eq. 38, we have:√
1 + (−4γ2t) ≤

√
exp

(
−4γ2t

)
= exp

(
−2γ2t

)
(39)

As such, we have:
Zt ≤ exp

(
−2γ2t

)
(40)

This finishes the proof for Eq. 28. Under the weak learning assumption, we further have γt ≥ γ and thus the
stated bound exp(−2Tγ2). Finally, note that as soon as the error rate drops below 1/N , it must become zero.
Therefore, as long as exp(−2Tγ2) < 1/N , which means

T >
lnN

2γ2
,

AdaBoost ensures zero training error.

2.6 Generalization Error

According to standard VC theory, the difference between the generalization error and the training error is
bounded by something like Õ

(√
C/N

)
, where C is some complexity measure of the hypothesis space.

This complexity for boosting grows as O(T), since combining more weak classifiers leads to a more
complicated final classifier H . We have proved that after T > lnN

2γ2 rounds the training error of AdaBoost
becomes 0. Hence, if we stop the algorithm at the right time, AdaBoost will have generalization error of order
Õ
(√

lnN
γ2N

)
, which can be arbitrarily small when N is large enough.

Remark 3. The above proposition indicates that under the weak learning assumption, AdaBoost does ensure
arbitrarily small generalization error given enough examples, implying that “boosting” is indeed possible, or
in more technical terms, weak learnability is equivalent to strong learnability.

2.7 Prevention of Overfitting

In practice, AdaBoost tends to prevent overfitting, in the sense that even if one keeps running the algorithm for
many more rounds after the training error has dropped to zero, the generalization error still keeps decreasing.
It turns out that the concept of margin is the key for understanding this phenomenon. The margin of an
example (x, y) w.r.t. the classifier H is defined as yf(x) where

f(x) =
F (x)∑T
t=1 αt

=
T∑
t=1

(
αt∑T
τ=1 ατ

)
ht(x).

17-11

It is clear that the margin is always in [−1, 1], and the sign of the margin indicates whether the final classifier
H makes a mistake on x or not. Specifically we want the margin to be positive in order to have low error
rate. However, we also want the margin to be a large positive (close to 1), since in this case there is a huge
difference between the vote for +1 and −1, and the decisive win of one label makes us feel more confident
about the final prediction.
Indeed, margin theory says that for any θ, the generalization error of H and the fraction of training examples
with margin at most θ are related as follows:

E(x,y)∼D[1{H(x) ̸= y}] ≤ 1

N

N∑
i=1

1{yif(xi) ≤ θ}+ Õ

(
1

θ

√
CH
N

)
,

where CH is the complexity of the hypothesis space H used by the oracle (recall ht ∈ H), which is independent
of the number of weak classifiers combined by H .
Therefore, if keeping running AdaBoost increases the margin even after the training error drops to zero, then it
explains why overfitting does not happen. This is true because under the weak learning assumption AdaBoost
guarantees

1

N

N∑
i=1

1{yif(xi) ≤ θ} ≤
(√

(1− 2γ)1−θ(1 + 2γ)1+θ

)T

.

One way to interpret this bound is to note that as long as θ is such that (1− 2γ)1−θ(1 + 2γ)1+θ < 1, which
translates to

θ ≤ Γ(γ) ≜
− ln(1− 4γ2)

ln
(
1+2γ
1−2γ

) ≤ 2γ,

then the fraction of examples with margin at most θ is eventually zero when T is large enough. In other words,
if we keep running AdaBoost, eventually the smallest margin is Γ(γ) and the generalization error is thus

Õ

(
1

Γ(γ)

√
CH
N

)
.

Remark 4. AdaBoost is not doing the best possible job in maximizing the smallest margin. The best possible
smallest margin under the weak learning assumption can be shown to be exactly 2γ.

Next Lecture

The next lecture will cover the following topics:
(i) Midterm solutions,
(ii) PCA.

References:

1. Freund, Yoav, and Robert E. Schapire. ”A decision-theoretic generalization of on-line learning and an
application to boosting.” Journal of computer and system sciences 55.1 (1997): 119-139.

2. Schapire, Robert E. ”The strength of weak learnability.” Machine learning 5 (1990): 197-227.

17-12

3. Bishop, Christopher M., and Nasser M. Nasrabadi. Pattern recognition and machine learning. Vol. 4.
No. 4. New York: springer, 2006.

4. Hertzmann, Aaron, David Fleet, and Marcus Brubaker. ”Machine learning and data mining lecture
notes.” Computer Science Department, University of Toronto (2012).

17-13

	Boosting Algorithms
	Weak Learning Oracle (WLO)
	Formal Description of Boosting

	Adaptive Boosting Algorithm (AdaBoost)
	Minimizing Exponential Loss
	Algorithm
	Intuition behind AdaBoost
	Example
	Error Bounds
	Generalization Error
	Prevention of Overfitting

