
CS 412 — Introduction to Machine Learning (UIC) April 03, 2025

Lecture 20
Instructor: Aadirupa Saha Scribe(s): Simran Mishra

Overview

In the last lecture, we covered the following main topics:

1. Introduction to PCA

2. Prelims of PCA

3. PCA Objective

This lecture focuses on:

1. Eigenvalues and Eigenvectors

2. PCA via Covariance Matrix and Eigenvectors

3. PCA on Symmetric Data Aligned with Diagonal Directions

4. PCA-Loss Minimization and Eigen Decomposition

5. PCA via Maximum Variance Formulation

1 Eigenvalues and Eigenvectors

1.1 What are Eigenvalues and Eigenvectors?

Eigenvectors and eigenvalues are fundamental concepts in linear algebra that describe how matrices transform
vectors.

Theorem 1.1: Definition of Eigenvector and Eigenvalue

Given a square matrix A ∈ Rn×n, a non-zero vector v⃗ ∈ Rn is called an eigenvector of A if:

Av⃗ = λv⃗

for some scalar λ ∈ R. The scalar λ is called the eigenvalue corresponding to eigenvector v⃗.

This means that applying the matrix A to v⃗ does not change its direction—only its magnitude (scaled by λ).
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1.2 Example: Diagonal Matrix

Let us consider the matrix:
A =

[
2 0
0 3

]
We want to find its eigenvalues and eigenvectors.

Exercise 1.1: Step 1: Find Eigenvalues

Solve the characteristic equation:

det(A− λI) =

∣∣∣∣2− λ 0
0 3− λ

∣∣∣∣ = (2− λ)(3− λ) = 0

Thus, the eigenvalues are:
λ1 = 2, λ2 = 3

Exercise 1.2: Step 2: Find Eigenvectors

We solve (A− λI)v⃗ = 0 for each eigenvalue.
For λ = 2:

I =

[
1 0
0 1

]
, 2I =

[
2 0
0 2

]
A− 2I =

[
2 0
0 3

]
−
[
2 0
0 2

]
=

[
0 0
0 1

]
Now solve: [

0 0
0 1

] [
x
y

]
=

[
0
0

]
⇒ 0x+ 1y = 0 ⇒ y = 0

So x can be any value. Choose x = 1, giving:

v⃗1 =

[
1
0

]
For λ = 3:

3I =

[
3 0
0 3

]
, A− 3I =

[
2 0
0 3

]
−
[
3 0
0 3

]
=

[
−1 0
0 0

]
Now solve: [

−1 0
0 0

] [
x
y

]
=

[
0
0

]
⇒ −1x = 0 ⇒ x = 0

So y can be any value. Choose y = 1, giving:

v⃗2 =

[
0
1

]
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1.3 Conclusion

• λ = 2 has eigenvector v⃗1 = [1, 0]T

• λ = 3 has eigenvector v⃗2 = [0, 1]T

These vectors lie on the x-axis and y-axis respectively and only get scaled by A; they do not rotate. That’s
why they are eigenvectors—they retain their direction under the transformation.

Exercise 1.3: Practice Problem

Let
A =

[
4 0
0 5

]
Find the eigenvalues and corresponding eigenvectors of A.

2 PCA via Covariance Matrix and Eigenvectors

2.1 2.1 Covariance Matrix Definition

In PCA, we begin by computing the covariance matrix S of the data:

S =
1

N

N∑
i=1

(xi − x̄)(xi − x̄)T

Where:

• xi ∈ Rd is the ith data point

• x̄ = 1
N

∑N
i=1 xi is the sample mean vector

2.2 2.2 Symmetric Distribution Example

Now consider a 2D dataset with points located only at ±e1 and ±e2, where:

• N1: Number of points on ±e1

• N2: Number of points on ±e2

By symmetry:
x̄ =

1

N
(N1e1 +N1(−e1) +N2e2 +N2(−e2)) = 0

So the covariance matrix simplifies to:

S =
1

N

N∑
i=1

xix
T
i
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2.3 2.3 Compute Covariance Components

We now compute the individual outer products:

e1 =

[
1
0

]
⇒ e1e

T
1 =

[
1
0

] [
1 0

]
=

[
1 0
0 0

]

e2 =

[
0
1

]
⇒ e2e

T
2 =

[
0
1

] [
0 1

]
=

[
0 0
0 1

]
Hence the full covariance matrix becomes:

S =
1

N

[
2N1

[
1 0
0 0

]
+ 2N2

[
0 0
0 1

]]
=

1

N

[
2N1 0
0 2N2

]

2.4 2.4 Eigenvalues and Eigenvectors of S

We now find the eigenvalues and eigenvectors by solving the characteristic equation of matrix S.
Let:

S =
1

N

[
A 0
0 B

]
where A = 2N1, B = 2N2

Step 1: Characteristic Equation

We use the identity matrix I =

[
1 0
0 1

]
and compute:

det(S − λI) = det

([
A
N − λ 0

0 B
N − λ

])
=

(
A

N
− λ

)(
B

N
− λ

)

⇒ λ1 =
A

N
=

2N1

N
, λ2 =

B

N
=

2N2

N

Step 2: Solve for Eigenvectors

We now solve (S − λI)v⃗ = 0 for each eigenvalue.

Eigenvector for λ1:

S − λ1I =

[
A
N − A

N 0

0 B
N − A

N

]
=

[
0 0

0 B−A
N

]
We solve: [

0 0

0 B−A
N

] [
x
y

]
=

[
0
0

]
⇒ B −A

N
· y = 0 ⇒ y = 0

x is free to choose. Let x = 1, then:

v⃗1 =

[
1
0

]

Eigenvector for λ2:
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S − λ2I =

[
A
N − B

N 0

0 B
N − B

N

]
=

[
A−B
N 0
0 0

]
We solve: [

A−B
N 0
0 0

] [
x
y

]
=

[
0
0

]
⇒ A−B

N
· x = 0 ⇒ x = 0

Choose y = 1, then:

v⃗2 =

[
0
1

]

Summary

• λ1 =
2N1
N with eigenvector v⃗1 =

[
1
0

]

• λ2 =
2N2
N with eigenvector v⃗2 =

[
0
1

]
Theorem 2.1: Principal Component Selection

The direction that captures the most variance is the eigenvector corresponding to the largest eigenvalue.
If N1 ≫ N2, then λ1 ≫ λ2, so v⃗1 is the first principal component.

2.5 2.5 PCA Intuition Recap

• Covariance matrix captures how features vary together.

• Its eigenvectors represent directions of maximum and minimum variance.

• Eigenvalues tell how much variance exists in each direction.

• PCA picks top m eigenvectors with highest eigenvalues for projection.

Exercise 2.1: Eigenvectors of a Diagonal Covariance Matrix

Let:
S =

1

6

[
12 0
0 6

]
1. Compute the eigenvalues using the characteristic equation.

2. Solve (S − λI)v⃗ = 0 to get eigenvectors.

3. Which principal component direction will PCA select and why?

20-5



3 PCA on Symmetric Data Aligned with Diagonal Directions

3.1 Covariance Matrix with Diagonal Directions

Assume we have a dataset where the data points lie along the directions v1 =
[
1
1

]
and v2 =

[
−1
1

]
, possibly

negated. We denote:

• N1: number of points along v1 and −v1

• N2: number of points along v2 and −v2

• N = N1 +N2: total number of data points

The general covariance formula is:

S =
1

N

N∑
i=1

(xi − x̄)(xi − x̄)T

Since the dataset is symmetric about the origin (equal number of points in opposite directions), the mean is:

x̄ =
1

N

∑
xi = 0 ⇒ S =

1

N

∑
xix

T
i

Now, normalize the vectors to unit length:

v̂1 =
1√
2

[
1
1

]
, v̂2 =

1√
2

[
−1
1

]
Step: Compute Outer Products (Rank-1 Matrices)

v̂1v̂
T
1 =

(
1√
2

[
1
1

])(
1√
2

[
1 1

])
=

1

2

[
1 1
1 1

]

v̂2v̂
T
2 =

(
1√
2

[
−1
1

])(
1√
2

[
−1 1

])
=

1

2

[
1 −1
−1 1

]
Covariance Matrix: Add Contributions

S =
1

N

(
N1 · v̂1v̂T1 +N2 · v̂2v̂T2

)
=

1

N

(
N1

2

[
1 1
1 1

]
+

N2

2

[
1 −1
−1 1

])

=
1

N

[
2(N1 +N2) 2(N1 −N2)
2(N1 −N2) 2(N1 +N2)

]
Let A = 2(N1 +N2), B = 2(N1 −N2), so:

S =
1

N

[
A B
B A

]
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3.2 Eigenvalue Computation (Step-by-step)

We solve the characteristic equation:

det(S − λI) = 0 ⇒ det

([
A
N − λ B

N
B
N

A
N − λ

])
= 0

Compute determinant:(
A

N
− λ

)2

−
(
B

N

)2

= 0 ⇒
(
A

N
− λ

)2

=

(
B

N

)2

⇒ λ =
A±B

N

Substitute back:
λ1 =

2(N1 +N2) + 2(N1 −N2)

N
=

4N1

N

λ2 =
2(N1 +N2)− 2(N1 −N2)

N
=

4N2

N

3.3 Eigenvector Computation

Eigenvector for λ1 =
4N1
N

S − λ1I =
1

N

[
A− (A+B) B

B A− (A+B)

]
=

1

N

[
−B B
B −B

]
Solve: [

−B B
B −B

] [
x
y

]
=

[
0
0

]
⇒ −Bx+By = 0 ⇒ x = y

Choose x = 1, y = 1 ⇒ v⃗1 =
1√
2

[
1
1

]
Eigenvector for λ2 =

4N2
N

S − λ2I =
1

N

[
A− (A−B) B

B A− (A−B)

]
=

1

N

[
B B
B B

]
Solve: [

B B
B B

] [
x
y

]
=

[
0
0

]
⇒ Bx+By = 0 ⇒ x = −y

Choose x = −1, y = 1 ⇒ v⃗2 =
1√
2

[
−1
1

]

3.4 Interpretation

• If N1 > N2, then λ1 > λ2

• So PCA selects v⃗1 (diagonal direction [1, 1]) as the first principal component.

• The directions are orthogonal and unit norm, ideal for PCA basis.
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4 PCA — Loss Minimization and Eigen Decomposition

4.1 Motivation: Minimizing Reconstruction Error

Let the dataset be {xn}Nn=1 ⊂ RD. Our goal is to find projections x̃n ∈ RD that minimize the reconstruction
loss:

J =
1

N

N∑
n=1

∥xn − x̃n∥22

We write the reconstruction using m principal directions:

x̃n =

m∑
i=1

zniui +

D∑
j=m+1

bjuj

where:

• zni = ⟨xn, ui⟩

• bj = ⟨x̄, uj⟩

4.2 Reformulation Using Covariance Matrix

Given that x̄ = 1
N

∑
xn, and S = 1

N

∑
(xn − x̄)(xn − x̄)⊤, the error becomes:

J =

D∑
j=m+1

u⊤j Suj

We aim to minimize this quantity by selecting the appropriate uj’s.

4.3 Recursive Derivation — Case 1: m = D − 1

Let uD be the vector that minimizes u⊤DSuD subject to ∥uD∥ = 1. This is a constrained optimization
problem.
Using Lagrangian:

L(uD, λ) = u⊤DSuD + λ(1− u⊤DuD)

Taking derivative and setting it to zero:

∇uDL = 2SuD − 2λuD = 0 ⇒ SuD = λuD

Hence, uD must be an eigenvector of S, and λ is the corresponding eigenvalue. To minimize J , we choose
uD as the eigenvector corresponding to the smallest eigenvalue λD.
Then:

J = λD
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4.4 Case 2: Recursive Selection of All ui

Now assume m = D − 2. We have already selected uD. We now find uD−1 such that:

min
uD−1

u⊤D−1SuD−1, subject to:

• ∥uD−1∥2 = 1

• u⊤D−1uD = 0

This ensures uD−1 lies in the orthogonal subspace to uD. The same Lagrangian trick shows:

SuD−1 = λD−1uD−1

So uD−1 must be the eigenvector of S corresponding to the second smallest eigenvalue.
We continue this recursively:

ui is the eigenvector of S corresponding to the i-th smallest eigenvalue

4.5 How to Choose m

We want to discard directions um+1, . . . , uD, and retain u1, . . . , um. The reconstruction error is:

J =
D∑

j=m+1

λj

Heuristics for choosing m:

• Find the smallest m such that:
λm − λm+1 < ε

for some small threshold ε > 0

• Use the elbow method: plot Jm =
∑D

j=m+1 λj and pick the point where the decrease flattens

Figure 1: The elbow point corresponds to the optimal number of retained principal components.
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4.6 Final PCA Summary

• PCA finds orthonormal directions u1, . . . , uD which are eigenvectors of S

• Eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λD measure variance along each ui

• To reduce dimension to m, keep u1, . . . , um

• This minimizes reconstruction loss:

J =
D∑

j=m+1

λj

• Variance preserved is
∑m

i=1 λi

5 PCA via Maximum Variance Formulation

PCA can also be derived by finding the directions that maximize variance in the data, which turns out to be
equivalent to minimizing reconstruction error.

5.1 Step 1: Projecting on a Direction

Let v⃗1 ∈ RD be a unit vector (i.e., ∥v⃗1∥ = 1).
We project each centered data point x̄n = xn − µ onto v⃗1. The projection is a scalar:

zn1 = v⃗⊤1 x̄n

The goal is to find the direction v⃗1 along which the variance of projections zn1 is maximized.

5.2 Step 2: Variance Maximization Objective

Define variance along v⃗1:

Var(zn1) =
1

N

N∑
n=1

(v⃗⊤1 x̄n)
2 = v⃗⊤1 Sv⃗1

Subject to:

∥v⃗1∥2 = 1

This is a constrained optimization problem. Use Lagrange multipliers:

L(v⃗1, λ) = v⃗⊤1 Sv⃗1 − λ(v⃗⊤1 v⃗1 − 1)

Take the derivative and set it to zero:

∇v⃗1L = 2Sv⃗1 − 2λv⃗1 = 0 ⇒ Sv⃗1 = λv⃗1

So, v⃗1 must be an eigenvector of S, and λ is its eigenvalue.
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5.3 Step 3: Recursive Projection Directions

To find the second direction v⃗2, maximize variance along it while keeping it orthogonal to v⃗1:

maximize v⃗⊤2 Sv⃗2 subject to ∥v⃗2∥ = 1, v⃗⊤1 v⃗2 = 0

This again leads to:

Sv⃗2 = λ2v⃗2

Repeat this process recursively — so PCA directions v⃗1, . . . , v⃗m are the top m eigenvectors of S.

5.4 Equivalence to Reconstruction Error Minimization

The reconstruction error in PCA is:

J =

D∑
j=m+1

λj

The total variance of data is:

Total Variance =
D∑
j=1

λj

Variance retained using top m components:

Retained Variance =
m∑
j=1

λj

So minimizing the reconstruction error
∑D

j=m+1 λj is equivalent to maximizing the retained variance∑m
j=1 λj .
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5.5 Geometric Interpretation

Figure 2: Principal component directions via variance maximization. PC1 (red) captures the highest variance;
PC2 (blue) is orthogonal and captures remaining variance.

5.6 Final Remark

Conclusion

• PCA can be derived either by minimizing reconstruction error or by maximizing projected
variance.

• Both formulations lead to the same eigenvalue problem.

• The top m eigenvectors of S provide an optimal subspace for projection.

Next Lecture

In the next lecture, we will cover the following main topics:

1. Introduction to Clustering

2. K Means Clustering

3. Spectral Clustering
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