
CS 412 — Introduction to Machine Learning (UIC) April 10, 2025

Lecture 21
Instructor: Aadirupa Saha Scribe(s): (Haoxuan Wang)

Overview

In the last lecture, we covered the following main topics:

1. PCA

2. Eigen vector/value calculation

This lecture focuses on:

1. K-Means clustering

2. Cluster number determination

3. Kernelized K-Means

4. Spectral Clustering

5. DBSCAN (advanced)

1 Clustering

Clustering is an unsupervised learning technique to “group” a subset of instances.

More technically:

Let
D = {xi}ni=1

be a dataset consisting of instances.
Goal: Find “separated” partitions of D such that:

D = D1 ∪D2 ∪D3 ∪ · · · ∪DK , [K = # clusters]

subject to:
Di ∩Dj = ∅ ∀i ̸= j ∈ [K]

This is called hard clustering.

21-1

Figure 1: A 2-D clustering example.

Example:

As shown in Fig. 1, if d = 2 (2-dimensional dataset), and

D =

{(
x
(1)
1

x
(1)
2

)
,

(
x
(2)
1

x
(2)
2

)
, . . . ,

(
x
(k)
1

x
(k)
2

)}
, with K = 3

Each cluster D1, D2, D3 has its own center µ1, µ2, µ3 respectively.

Clustering Assignment Notation

We denote the clustering assignment as a mapping:

C : [n]→ [k],

where C(i) is the cluster index assigned to data point i.

• For any cluster c ∈ [k], we also denote by µc ∈ Rd the cluster centroid / head.

• Every partition-c for the c-th cluster is denoted by:

Dc = {i ∈ [n] | C(i) = c} , for c ∈ [k].

2 K-Means Clustering

21-2

2.1 Supervised Learning and Unsupervised Learning

Supervised learning (SL) refers to learning a mapping from an input space X ⊂ Rd to an output space Y .
The training data set is

DSL = {(x(1), y(1)), (x(2), y(2)), . . . , (x(n), y(n))},

where x(i) ∈ Rd and y(i) is the label or target value (e.g., a class for classification, or a real value for
regression). The goal is to learn a function

f : X → Y

that predicts y accurately for new inputs x. Examples of supervised learning tasks:

• Classification: Y = {1, 2, . . . ,K} or {cat, dog, . . . }

• Regression: Y ⊆ R

Unsupervised learning (USL) deals with unlabeled data. Here, the training set is

DUSL = {x(1), x(2), . . . , x(n)}, x(i) ∈ Rd,

with no corresponding labels y(i). The goal often involves discovering hidden structure or patterns in the data.
Clustering is a key example, in which we seek to partition {x(i)} into groups (clusters) such that points within
each group are more similar to each other than to those in other groups.
Formally, one can define a clustering function

G : X → {1, 2, . . . ,K},

where G(x(i)) ∈ {1, 2, . . . ,K} is the cluster index assigned to point x(i). Equivalently, we can define clusters
Ck ⊂ {1, 2, . . . , n} as

Ck = {i | G(x(i)) = k}, k = 1, . . . ,K.

2.2 K-Means Clustering

K-Means is a classic clustering algorithm aiming to partition n points into K clusters. Intuitively, each
cluster is represented by a centroid, and each data point is assigned to the cluster whose centroid is closest in
terms of Euclidean distance.

Objective Function:

Let
µk ∈ Rd (k = 1, . . . ,K)

denote the centroid of cluster Ck. K-Means minimizes the sum of squared distances between each data point
and its assigned cluster centroid:

J(µ1, . . . , µK , C1, . . . , CK) =
K∑
k=1

∑
x(i)∈Ck

∥x(i) − µk∥2.

21-3

Algorithm Description:

K-Means proceeds iteratively, alternating between an assignment step and an update step:

1. Initialization: Pick K initial centroids µ(0)
1 , µ

(0)
2 , . . . , µ

(0)
K . Sometimes this is done at random, or by a

more refined method such as K-Means++.

2. Assignment step: For each point x(i), assign it to the cluster whose centroid is closest:

C
(t)
k = {x(i) | k = argmin

j
∥x(i) − µ

(t)
j ∥

2}.

3. Update step: Recompute each centroid as the mean of points in the corresponding cluster:

µ
(t+1)
k =

1

|C(t)
k |

∑
x(i)∈C(t)

k

x(i).

4. Convergence check: Repeat the above assignment and update steps until the centroids stabilize or a
maximum number of iterations is reached.

Algorithm 2.1: K-Means Algorithm

1: Input:
D = {x1, . . . , xn}, k (number of clusters)

2: Initialization: Let C0 be some arbitrary clustering assignment. Let µ1, µ2, . . . , µk be any
arbitrary points in D (initial centroids). Flag = true

3: while Flag is true do
4: Set Flag = false
5: for all i ∈ [n] do If ∃ k̃ ∈ [k] such that Ct(i) ̸= k̃ but

∥xi − µt
k̃
∥22 < ∥xi − µt

Ct(i)∥
2
2,

6: then set Ct+1(i)← k̃, Flag = true
7: end for
8: Update cluster centroids:

µt+1

k̃
=

1

|Dt
k̃
|
∑
i∈Dt

k̃

xi, ∀ k̃ ∈ [k]

9: where

Dt
k̃
=
{
i ∈ [n]

∣∣∣ Ct(i) = k̃
}

is the partition for the k̃-th cluster.

10: Increment t← t+ 1
11: end while
12: Output: Return final clustering assignment Ct+1 and centroids (µt+1

1 , . . . , µt+1
k).

21-4

More analysis on the algorithm

• Convergence: K-Means always terminates in a finite number of iterations (each iteration strictly
decreases the objective), although it may converge to a local rather than global minimum.

• Initialization Sensitivity: The algorithm’s final solution depends on the initial centroids; multiple runs
or K-Means++ can mitigate poor initialization.

• Complexity: Each iteration takes O(nKd) time (for n points, K centroids, and dimension d). Over I
iterations, total complexity is O(nKdI).

• Choosing K: Often done via heuristic (e.g. the elbow method), domain knowledge, or more advanced
methods like silhouette analysis.

2.3 Convergence of K-Means

Definition: Sum of Squared Errors (SSE)

One common way to quantify the loss or cost for a clustering algorithm is via the Sum of Squared Errors /
Sum of Squared Distances (SSE/SSD). Let

{x(1), x(2), . . . , x(n)} ⊂ Rd

be our dataset, given a clustering mapping Ct and corresponding centroids µt, the objective function is
defined as:

SSE(Ct, µt) =

n∑
i=1

∥∥∥xi − µt
Ct(i)

∥∥∥2
This measures the sum of squared distances of data points from their assigned cluster centers.

Theorem 1: K-Means Algorithm Converges

∀t : SSE(Ct+1, µt+1) < SSE(Ct, µt)

Proof:

The proof proceeds in two steps:

• Step 1:
SSE(Ct+1, µt) < SSE(Ct, µt)

• Step 2:
SSE(Ct+1, µt+1) < SSE(Ct+1, µt)

21-5

Proof of Step 1:

This follows directly from the update step of K-Means:

LHS = SSE(Ct+1, µt) =

n∑
i=1

∥∥∥xi − µt
Ct+1(i)

∥∥∥2
<

n∑
i=1

∥∥∥xi − µt
Ct(i)

∥∥∥2 = SSE(Ct, µt) = RHS

Proof of Step 2:

This step uses the fact that updating centroids minimizes SSE over fixed assignments Ct+1.

Lemma 1

Consider points z′1, z
′
2, . . . , z

′
m ∈ Rd where m ≥ 1, and let

z∗ =
1

m

m∑
i=1

z′i

be any point in the same d-dimensional space. Then:

m∑
i=1

∥z′i − z∥2 ≥
m∑
i=1

∥z′i − z∗∥2 for any z ∈ Rd.

Proof of Lemma 1

Define:

f(z) :=

m∑
i=1

∥z′i − z∥2, for any z ∈ Rd.

• f(z) is convex.

• Gradient:

∇f(z) = −2
m∑
i=1

(z′i − z)

• Setting∇f(z) = 0 yields:

mz∗ =
m∑
i=1

z′i ⇒ z∗ =

(
m∑
i=1

z′i

)/
m.

Thus, the function f(z) is minimized at z∗ = 1
m

∑m
i=1 z

′
i, completing the proof.

21-6

Continuing the Proof of Step 2

By Lemma 1:

SSE(Ct+1, µt+1) =
n∑

i=1

∥∥∥xi − µt+1
Ct+1(i)

∥∥∥2 = k∑
k′=1

∑
i∈Dt+1

k′

∥∥xi − µt+1
k′

∥∥2
Using Lemma 1:

≤
k∑

k′=1

∑
i∈Dt+1

k′

∥∥xi − µt
k′
∥∥2 = SSE(Ct+1, µt)

Conclusion

The proof of Theorem 1 (K-Means convergence) follows by combining the results of Step 1 and Step 2.

3 Choosing the Number of Clusters K

How to Choose k?

(B) Silhouette Scoring Method

When applying K-Means clustering, one of the practical challenges is selecting an appropriate number of
clusters K. Two common heuristic approaches are the Elbow Method and the Silhouette Method.

3.1 The Elbow Method

Let SSE(K) be the sum of squared errors achieved by K-Means when we choose K clusters (also called
within-cluster sum of squares, WCSS). Formally:

SSE(K) =
K∑
k=1

∑
x(i)∈Ck

∥∥x(i) − µk

∥∥2.
We compute SSE(K) for a range of values K = 1, 2, . . . ,Kmax (e.g. up to some reasonable upper bound).
Plotting SSE(K) as a function of K typically yields a monotonically decreasing curve; as K increases,
SSE(K) generally decreases (since more clusters can capture finer distinctions).

SSE(K)y
(Elbow shape)

K = 1 → K = 2 → . . . → Kmax

Elbow Criterion. Look for a point K = k∗ on this curve where the rate of decrease (i.e., the slope)
significantly changes (the knee or elbow). This indicates that increasing K beyond k∗ yields diminishing
returns in lowering the SSE, suggesting k∗ is a good choice.

21-7

Figure 2: Illustrations of the Elbow Method (Ref. 4). The Y-axis (scoring metric) may vary based on the
specific problems.

3.2 The Silhouette Method

Another popular approach is to use the Silhouette Score, which quantifies how well each data point “fits”
within its assigned cluster compared to other clusters. Let

a(i) = average distance of x(i) to other points in the same cluster,

b(i) = min
k ̸=c(i)

{
average distance of x(i) to the points in cluster k

}
,

where c(i) denotes the cluster index assigned to x(i). The silhouette score s(i) for point x(i) is:

s(i) =
b(i)− a(i)

max
{
a(i), b(i)

} .
- If s(i) is close to +1, then x(i) is far from the other clusters but tightly grouped within its own cluster (good).
- If s(i) is close to 0, then x(i) lies on or near a cluster boundary.
- If s(i) is negative, then x(i) is possibly assigned to the wrong cluster.

Overall Silhouette Score. We then take the average silhouette score over all points:

S =
1

n

n∑
i=1

s(i).

For each candidate K, we run K-Means and compute S. A higher average silhouette score indicates
better-defined clusters. We choose

K = argmax
K

S.

Often one plots the average silhouette score versus K and picks the value of K that yields the highest peak or
a suitably high silhouette score.

21-8

Note:
S ∈ [−1, 1],

and a value of 1 indicates a “perfect” clustering assignment.

The heuristic would be to select k∗ with sufficiently high silhouette score.

Summary

• Elbow Method: Look for the “knee” in the plot of SSE(K) vs. K.

• Silhouette Method: Compute silhouette scores for each K and pick the K with the highest average
silhouette score.

These are heuristic methods—there is no absolute guarantee that the chosen K is optimal, but they serve as
practical, widely-used guidelines in real-world applications.

Code example

Silhouette Method

4 Kernelized K-Means

Kernelized K-Means extends the classical K-Means algorithm by mapping the original data into a high-
dimensional feature space via a non-linear function, and then performing clustering in that space. This enables
the algorithm to discover clusters that are non-linearly separable in the original space.

4.1 Motivation and Objective

Given data points
X = {x(1), x(2), . . . , x(n)} ⊂ Rd,

we wish to partition them into K clusters. In kernelized K-Means, a mapping φ : Rd → H is used to
transform each x(i) into a feature spaceH. The clustering objective in the feature space is given by:

J =

K∑
k=1

∑
x(i)∈Ck

∥∥∥φ(x(i))− µk

∥∥∥2 ,
where the centroid µk for cluster Ck is computed as:

µk =
1

|Ck|
∑

x(i)∈Ck

φ(x(i)).

21-9

https://dzone.com/articles/kmeans-silhouette-score-explained-with-python-exam

4.2 Kernel Trick and Distance Computation

Rather than computing φ(x) explicitly, we use a kernel function k(x, y) = ⟨φ(x), φ(y)⟩ to determine
distances inH. The squared distance between φ(x(i)) and the centroid µk is:∥∥∥φ(x(i))− µk

∥∥∥2 = ⟨φ(x(i)), φ(x(i))⟩ − 2

|Ck|
∑

x(j)∈Ck

⟨φ(x(i)), φ(x(j))⟩+ 1

|Ck|2
∑

x(j),x(l)∈Ck

⟨φ(x(j)), φ(x(l))⟩

= k(x(i), x(i))− 2

|Ck|
∑

x(j)∈Ck

k(x(i), x(j)) +
1

|Ck|2
∑

x(j),x(l)∈Ck

k(x(j), x(l)).

4.3 Algorithm Outline

Kernelized K-Means follows a similar iterative procedure as the standard algorithm:

1. Initialization: Choose K initial clusters (or centroids in the feature space) by selecting initial points or
using a method like K-Means++.

2. Assignment Step: For each point x(i), assign it to the cluster that minimizes the kernel-based squared
distance.

3. Update Step: Recompute the cluster “centroids” implicitly by using the kernel values:

µk ←
1

|Ck|
∑

x(i)∈Ck

φ(x(i)).

Note that the centroids are not computed explicitly; only distances (expressed in terms of k(x, y)) are
needed.

4. Convergence Check: Repeat the assignment and update steps until the objective function J converges
or changes minimally.

Algorithm 4.1: Kernelized K-Means Clustering Algorithm

1: Input: Data set {x(1), . . . , x(n)}, number of clusters K, kernel function k(·, ·).
2: Output: Clusters C1, C2, . . . , CK

3: Assign initial cluster memberships for each x(i).
4: while not convergence or not reach maximum iterations do
5: for each x(i) do
6: Compute squared distances using

d2(x(i), Ck) = k(x(i), x(i))− 2

|Ck|
∑

x(j)∈Ck

k(x(i), x(j)) +
1

|Ck|2
∑

x(j),x(l)∈Ck

k(x(j), x(l))

7: Assign x(i) to the cluster with the minimum computed distance.
8: end for
9: Update cluster memberships based on new assignments.

10: end while

21-10

https://en.wikipedia.org/wiki/K-means%2B%2B

Remarks: Kernelized K-Means can capture complex, non-linear cluster boundaries, but the choice of kernel
(e.g., Gaussian, polynomial) is crucial to its performance.

5 Spectral Clustering (advanced clustering method)

Spectral Clustering provides a powerful method to partition data (or the nodes of a graph) into clusters by
leveraging the eigenstructure of a graph Laplacian derived from the data. It is particularly well-suited for
non-convex or “manifold-like” structures that can be difficult for algorithms like K-Means to detect.

• Goal: Separate data into groups (clusters) such that points within the same cluster are highly “connected,”
and points in different clusters are less connected.

• Key idea: Encode the data as a graph, construct a suitable Laplacian matrix, then use its eigenvectors
to embed data into a new space where a simple clustering method (like K-Means) suffices.

5.1 From Data to Graphs

Adjacency Matrix W

Given n data points {x(1), x(2), . . . , x(n)} ⊂ Rd, we build an undirected similarity graph G = (V,E) with:

V = {1, 2, . . . , n} (one vertex per data point),

and an adjacency matrix
W ∈ Rn×n, Wij ≥ 0.

Several common ways to define W :

• k-Nearest Neighbor Graph: Connect each point to its k nearest neighbors in feature space. Then
Wij = 1 (or a weighted value) if x(j) is among the k neighbors of x(i), else 0.

• ε-Neighborhood Graph: Connect x(i) and x(j) if ∥x(i) − x(j)∥ ≤ ε. Then Wij = 1 (or a function of
the distance) if they are within ε, else 0.

• Heat Kernel / Gaussian Similarity:

Wij = exp
(
−∥x

(i) − x(j)∥2

2σ2

)
if x(i) and x(j) are neighbors (in one of the above senses).

Degree Matrix D

Define the degree of each node i by summing up all its edge weights:

Dii =
n∑

j=1

Wij , and Dij = 0 for i ̸= j.

Hence, D is a diagonal matrix with entries {D11, D22, . . . , Dnn}.

21-11

5.2 Graph Laplacians

Unnormalized Laplacian L

The unnormalized Laplacian is defined as
L = D −W.

Key properties:

• L is symmetric and positive semi-definite.

• The smallest eigenvalue of L is 0, with corresponding eigenvector 1 = (1, 1, . . . , 1)⊤.

• For partitioning into two sets, the second smallest eigenvector (the Fiedler vector) often provides
valuable information.

Normalized Laplacians Lsym and Lrw

Sometimes, it is advantageous to normalize the Laplacian to account for uneven degrees. Two common
variants:

Lsym = D− 1
2 (D −W)D− 1

2 = I −D− 1
2WD− 1

2 ,

Lrw = D−1(D −W) = I −D−1W.

• Lsym is symmetric, which is often convenient for analysis.

• Lrw can be interpreted in terms of random walks on the graph.

5.3 Normalized Cuts

Spectral clustering can be seen as an approach to approximately minimize the Normalized Cut (Ncut) of the
graph. For a bipartition (S, T) of the vertices:

cut(S, T) =
∑

i∈S, j∈T
Wij ,

Ncut(S, T) =
cut(S, T)

assoc(S, V)
+

cut(S, T)
assoc(T, V)

,

where
assoc(S, V) =

∑
i∈S, j∈V

Wij .

Minimizing Ncut can be related to the eigenvectors of Lsym or Lrw. For multiway partitions (more than 2
clusters), the approach extends by considering multiple eigenvectors.

21-12

5.4 Spectral Clustering Algorithms

Below is a simplified outline for normalized spectral clustering usingLsym. (Unnormalized and random-walk
versions are conceptually similar, with minor algebraic differences.)

1. Form the Similarity Graph.

• Construct W using, e.g., k-nearest neighbors or ε-neighborhoods with a suitable kernel.
• Compute the degree matrix D.

2. Compute the Laplacian.
Lsym = I −D− 1

2 W D− 1
2 .

3. Compute the First K Eigenvectors.

• Let u1, . . . ,uK be the eigenvectors of Lsym corresponding to the smallest K eigenvalues (the
“bottom” K eigenvectors).

4. Form Embeddings and Normalize Rows.

• Let U ∈ Rn×K be the matrix with columns u1, . . . ,uK .
• Normalize each row of U to unit length to get T . (In some versions, this step may vary.)

5. Cluster the Rows of T .

• Each row of T is now a K-dimensional embedding of the original vertex x(i).
• Apply K-Means (or another clustering method) to the rows of T to partition the data into K

clusters.

6. Assign Original Points.

• Let the resulting clusters from the K-Means step define the final clusters of the graph vertices.

5.5 Interpretation and Remarks

• Manifold vs. Graph: Even if the data lie on a high-dimensional manifold, constructing a graph and
using the Laplacian’s spectral properties captures non-linear structures more readily than linear methods
such as PCA.

• Choice of K: As with other clustering approaches, one may use the Elbow Method, Silhouette Scores,
or domain knowledge to pick K.

• Complexity: The most computationally expensive step is the eigen-decomposition, typically O(n3) in
the worst case. For large-scale problems, approximate or sparse methods are used.

• Normalized vs. Unnormalized: Normalized Laplacians often yield more robust results, especially if
node degrees vary widely.

21-13

6 DBSCAN (advanced clustering method)

DBSCAN (Density-Based Spatial Clustering of Applications with Noise) is a density-based clustering
algorithm designed to discover clusters of arbitrary shape and to identify noise/outlier points. Unlike K-Means,
DBSCAN does not require specifying the number of clusters in advance.

6.1 Key Concepts and Definitions

• ε-Neighborhood: For a point x(i), the ε-neighborhood is defined as:

Nε(x
(i)) = {x(j) | ∥x(i) − x(j)∥ ≤ ε}.

• MinPts: The minimum number of points required to form a dense region.

• Core Point: A point x(i) is a core point if |Nε(x
(i))| ≥ MinPts.

• Border Point: A point that is not a core point but falls within the ε-neighborhood of a core point.

• Noise Point: A point that is neither a core point nor a border point.

6.2 Algorithm Description

DBSCAN clusters points based on density connectivity:

1. Randomly select a point x(i). If it has not been visited, mark it as visited.

2. Retrieve the ε-neighborhood Nε(x
(i)).

3. Core Point Check: If |Nε(x
(i))| < MinPts, mark x(i) as noise; otherwise, start a new cluster.

4. Cluster Expansion: If x(i) is a core point, recursively add all points in Nε(x
(i)) that meet the density

criteria to the cluster. Continue this process for each neighbor point that is a core point.

5. Iterate: Continue until all points have been visited.

21-14

Algorithm 6.1: DBSCAN Clustering Algorithm

1: Input: Data set {x(1), . . . , x(n)}, parameters ε and MinPts.
2: Output: Clustered data points, with noise points identified.
3: Initialize all points as unvisited.
4: for each point x(i) do
5: if x(i) is not visited then
6: Mark x(i) as visited
7: N ← Nε(x

(i))
8: if |N | < MinPts then
9: Mark x(i) as noise

10: else
11: Create a new cluster C and add x(i)

12: ExpandCluster(x(i), N,C)
13: end if
14: end if
15: end for

Algorithm 6.2: ExpandCluster Function in DBSCAN

1: for each point x′ ∈ N do
2: if x′ is not visited then
3: Mark x′ as visited
4: N ′ ← Nε(x

′)
5: if |N ′| ≥ MinPts then
6: N ← N ∪N ′

7: end if
8: end if
9: if x′ is not yet part of any cluster then

10: Add x′ to cluster C
11: end if
12: end for

6.3 Intuition and Discussion

• Cluster Shape: DBSCAN can find clusters of arbitrary shape since it groups points based on local
density rather than relying on a global distance metric, allowing for the discovery of clusters with
arbitrary shapes and automatically identifying noise.

• No Need to Specify K: Unlike K-Means, DBSCAN does not require the number of clusters to be
known beforehand.

• Handling Noise: Points that do not belong to any cluster (i.e., those in sparse regions) are naturally
labeled as noise.

• Parameter Sensitivity: The choice of ε and MinPts is crucial. Too small ε may lead to many small
clusters or label most points as noise, whereas too large ε may merge distinct clusters.

21-15

Next Lecture

The next lecture will cover the following topics:
(i) Neural Nets
(ii) Back Propagation

References:

1. Pattern Recognition and Machine Learning by Christopher Bishop, page 424.

2. k-means Clustering by Shivaram Kalyanakrishnan. Link.

3. Survey of clustering algorithms, Rui Xu; D. Wunsch. Link

4. A Tutorial on Spectral Clustering, by Ulrike von Luxburg. Link

5. Online blogs: Link 1, Link 2

6. ChatGPT, OpenAI

21-16

https://www.cse.iitb.ac.in/~swaprava/courses/cs217/references/kmeans-convergence.pdf
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1427769
https://people.csail.mit.edu/dsontag/courses/ml14/notes/Luxburg07_tutorial_spectral_clustering.pdf
https://medium.com/@zalarushirajsinh07/the-elbow-method-finding-the-optimal-number-of-clusters-d297f5aeb189
https://builtin.com/data-science/elbow-method

	Clustering
	K-Means Clustering
	Supervised Learning and Unsupervised Learning
	K-Means Clustering
	Convergence of K-Means

	Choosing the Number of Clusters K
	The Elbow Method
	The Silhouette Method

	Kernelized K-Means
	Motivation and Objective
	Kernel Trick and Distance Computation
	Algorithm Outline

	Spectral Clustering (advanced clustering method)
	From Data to Graphs
	Graph Laplacians
	Normalized Cuts
	Spectral Clustering Algorithms
	Interpretation and Remarks

	DBSCAN (advanced clustering method)
	Key Concepts and Definitions
	Algorithm Description
	Intuition and Discussion

