
CS 412 — Introduction to Machine Learning (UIC) April 12th, 2025

Lecture 22
Instructor: Aadirupa Saha Scribe(s): Haoxuan Wang

Overview

In the last lecture, we covered the following main topics:

1. K-Means clustering

2. Spectral clustering

3. Kernelized clustering

This lecture focuses on:

1. More discussion on spectral clustering

2. Basics of Neural Nets

1 Spectral Clustering

1.1 Some Preliminaries on Graph Cuts

Balanced Graph-Cutting

The goal is to cut a given graph G(V,E,W ) into two sets A and B such that:

• The weight of edges connecting vertices in A to those in B is minimized.

• The sizes of A and B are “quite similar” (i.e., balanced).

Graph Definition

Assume any graph G = (V,E,W ) where:

• V : set of vertices

• E: set of edges

• W : set of edge weights

For any two vertices i, j ∈ V , define:

eij = 1(i, j are connected), wij = weight on edge (i, j).
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Figure 1: Example of a graph cut (Ref 2).

Graph Cut Definition

The weight of the cut between sets A and B is defined as:

Graph(A,B) :=
∑

i∈A,j∈B
wij .

This sum includes all edges crossing from set A to set B.

1.2 Formulations of the Graph Cut Problem

The problem can be formulated in several ways:

1. Balanced Cut:
min
A,B

Cut(A,B) s.t. |A| ≈ |B|

2. Ratio Cut:
min
A,B

Cut(A,B)

(
1

|A|
+

1

|B|

)
3. Normalized Cut:

min
A,B

Cut(A,B)

(
1

Vol(A)
+

1

Vol(B)

)
,

where:
Vol(A) =

∑
i∈A

di, and di =
∑

j:(i,j)∈E

wij (degree of vertex i)
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Quadratic Form Representation of Cuts

To solve the above problems, define a vector f corresponding to the partition A,B, such that:

f = (f1, . . . , fn) ∈ {−1, 1}n, where n = |V |

fi =

{
1, if i ∈ Partition A
−1, if i ∈ Partition B

Then the cut can be rewritten as:

Cut(A,B) =
∑

i∈A, j∈B
wij

=
1

4

∑
i,j

wij(fi − fj)
2

=
1

2
f⊤(D −W )f

1.3 Relaxing the Balanced Graph Cut Problem

The balanced graph cut problem can be rewritten as the following discrete optimization problem:

Problem P1:

min
f∈{−1,1}n

f⊤Lf s.t. f⊤1 = 0, f⊤f = n

(The constraint f⊤1 = 0 enforces balance:
∑

i∈A fi = −
∑

j∈B fj = 0)

But this formulation is NP-hard. So, we consider a relaxation:

Problem P2:

min
f∈Rn

f⊤Lf

f⊤f
s.t. f⊤1 = 0

Approximation Guarantee of P2

Since P2 is an approximation of P1, what can we say about its guarantees? Can we say that a solution to P2 is
also “nearly good” for P1?
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Theorem 1.1: Cheeger’s Inequality

If G is an undirected, regular graph (i.e., each vertex has the same degree d), then:

λ2

2
≤ min

A⊆V

Cut(A, V \A)

min(|A|, |V \A|)
≤
√
2λ2

where λ2 is the second smallest eigenvalue of the normalized Laplacian:

L = D−1/2(D −A)D−1/2

Moreover, a simple sorting-based algorithm can sort the eigenvector v2 (corresponding to λ2) to find a
partition A ⊆ V which is a

√
2λ2-approximate solution to the original balanced cut problem P1.

1.4 Properties of the Laplacian Matrix

• Laplacian L = D −W is always positive semidefinite (PSD).

0 ≤ λ1 ≤ λ2 ≤ · · · =⇒ All eigenvalues of L are nonnegative.

• The smallest eigenvalue λ1 is always 0:
λ1 = 0.

1 2

3

G: 1
2

3

4
5

6
Example 1 Example 2

Figure 2: Examples of graph structures (Left: Example 1; Right: Example 2).

Example 1: Graph G with 3 Nodes

We have three nodes: 1, 2, and 3 (Fig. 2). Edges connect node 1 to node 2, and node 1 to node 3. Hence the
adjacency matrix W (with Wij = 1 if nodes i and j share an edge, and 0 otherwise) is:

W =

0 1 1
1 0 0
1 0 0

 .
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The degree matrix D is diagonal, where Dii is the degree of node i (the sum of the entries in row i of W ):

D =

2 0 0
0 1 0
0 0 1

 .

The graph Laplacian is defined as L = D −W . Substituting the matrices above, we get:

L = D −W =

2 0 0
0 1 0
0 0 1

−
0 1 1
1 0 0
1 0 0

 =

 2 −1 −1
−1 1 0
−1 0 1

 .

Suppose L is such that v1 (often the constant vector) is an eigenvector for the eigenvalue 0. In a simplified
form,

Lv1 =

 2 −1 · · ·
−1 2 · · ·

...
... . . .



1

1

...

 =


0

0
...

 .

This shows v1 is an eigenvector with eigenvalue 0, consistent with the property that L has at least one zero
eigenvalue.

Example 2: Two Disconnected Components

Consider a graph with nodes {1, 2, 3} forming one connected component and nodes {4, 5, 6} forming another,
each shaped like a simple chain (Fig. 2). Because there are no edges between these two sets, the Laplacian
matrix L is block-diagonal:

L =



1 −1 0 0 0 0
−1 2 −1 0 0 0
0 −1 1 0 0 0

0 0 0 1 −1 0
0 0 0 −1 2 −1
0 0 0 0 −1 1


.

Because this graph has at least two disconnected components, the Laplacian L will have multiple zero
eigenvalues. In the case of three disconnected components, for instance:

λ1 = 0, λ2 = 0, λ3 = 0,

with corresponding eigenvectors

v1 = [1, 1, 1, 1, 1, 1], v2 = [1, 1, 1, 0, 0, 0], v3 = [0, 0, 0, 1, 1, 1].

Each vi is constant (i.e., has the same value) on one of the disconnected components, reflecting the fact that L
has a separate zero eigenvalue for each component.
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1.5 Spectral Embedding

Eigenvalues and Eigenvectors

From the graph Laplacian L, we obtain a set of eigenvalues and corresponding eigenvectors:

0 = λ1 ≤ λ2 ≤ λ3 ≤ · · · ≤ λd.

Each λi has an associated eigenvector vi.

Case: K = 2 Components

After applying spectral embedding with k = 2:

D̃ =


x1
x2
...
xn

 ∈ Rn×2,

where xi = (v2(i), v3(i)) are the entries from the second and third smallest eigenvectors of the Laplacian
matrix.

If x1 =
(
1
0

)
, x2 =

(
1
0

)
, x3 =

(
0
1

)
, then assign x1, x2 to cluster 1, and x3 to cluster 2.

General K-Dimensional Embedding

For a general K-way spectral clustering, Given eigenvalues:

0 = λ1 ≪ λ2 ≤ λ3 ≤ · · · ≤ λd with eigenvectors v1, v2, . . . , vd,

we take:
D̃ =

[
v2 v3 · · · vK+1

]
∈ Rn×K .

This serves as a new representation of the data in Rn×K , where v2, . . . , vK+1 correspond to the K smallest
nonzero eigenvalues of L. Each data point x(i) becomes a row in D̃, and then we can apply a standard
clustering method (e.g. K-Means) in this new K-dimensional space. This corresponds to finding a sparse
graph cut in the original graph, based on the eigenstructure of L.

Final Step:

Apply k-means on D̃ to identify the k clusters.

Remark 1. Reflect on these examples in the sparsest graph cut optimization view discussed above.

2 Neural Networks

In this lecture, we treat Neural Networks (NN) as a supervised learning framework for introduction.
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2.1 Starting from Supervised Learning

We consider a dataset
D = {(x(1), y(1)), (x(2), y(2)), . . . , (x(n), y(n))},

where each x(i) ∈ Rd is a feature vector (an instance), and y(i) is a label, e.g. y(i) ∈ {0, 1} for binary
classification.

Classical Methods

Examples of supervised learning algorithms include:

• Logistic Regression (LR)

• Support Vector Machines (SVM)

These methods learn a predictor that maps x to the label y.

Recall Logistic Regression: In a simple 2D feature space, the logistic regression predictor attempts to
separate labeled points with a linear boundary. For a more complicated space, we can adopt a kernelized
version to seperate data points.
However, there is a limitation on knowing which kernel to use:

• Need to know which kernel k to use. Formally, the kernel corresponds to an implicit feature mapping
φ.

k(x, x′) ←→ ⟨φ(x), φ(x′)⟩.

If we lack domain knowledge to select k, how can we achieve φ, thereby obviating the need to hand-craft the
kernel?
Neural networks provide a more flexible framework for supervised learning. Like LR or SVM, they map x
to y, but use multiple layers of nonlinear transformations to capture complex decision boundaries.
Note: A neural network (NN) tries to learn φ (the embedding) by training the parameters of the NN (instead
of fixing φ ahead of time).

2.2 A Simple Single-Neuron Architecture

Let x ∈ Rd be an input vector with components {x1, x2, . . . , xd}. A basic neural network “neuron” can be
described by:

z =

d∑
i=1

wi xi + b,

where wi are the learned weights, and b is a bias term. We then apply an activation function σ, often the
sigmoid function:

σ(z) =
1

1 + e−z
,

to obtain the output f(x):
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Figure 3: An illustration of a perceptron (Ref 2).

f(x) = σ
( d∑
i=1

wi xi + b
)
.

This output f(x) lies in the interval (0, 1) if σ is the sigmoid. Conceptually, each xi connects to the neuron
input with weight wi, and the neuron’s sum is offset by b. The illustration can be summarized as follows:

x1, x2, . . . , xd −−−→
inputs

(
linear sum: z

)
−−−→
bias b

−−−−−−→
activation σ

f(x).

2.3 One-Layer Neural Network

Figure 4: An illustration of a one layer NN. Ref 5.
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Consider a neural network with input vector

(x0, x1, x2, . . . , xN , 1)⊤ where xN+1 = 1 is the bias term,

and K = 1 output neurons. Each output neuron k (k = 1, . . . ,K) computes an activation

yj = f
(N+1∑

i=0

w
(k)
i xi

)
,

where:

• w
(k)
i is the weight from input xi to output neuron k.

• f(·) is an activation function, often a sigmoid or ReLU. In the figure, f(z) = 1
1+e−z , which maps real

numbers to (0, 1).

Illustration:

x0 = 1, x1, x2, . . . , xd︸ ︷︷ ︸
inputs

−→
d∑

i=0

w
(1)
i xi

f−→ y1,

d∑
i=0

w
(2)
i xi

f−→ y2, . . .
d∑

i=0

w
(K)
i xi

f−→ yK .

Interpretation

• Each xi is connected to every output neuron k with a weight w(k)
i .

• The bias input xN+1 = 1 ensures each output neuron can learn an offset.

• The activation function σ is applied to the linear sum, creating a non-linear mapping from inputs to
outputs {yk}.

2.4 Types of Activation Functions

1) Sigmoid

The sigmoid (logistic) function maps R to the interval (0, 1). For w ∈ R,

σ(w) =
1

1 + e−w
.

2) Tanh (Hyperbolic Tangent)

The tanh function maps R to the interval [−1, 1]. For w ∈ R,

tanh(w) =
e2w − 1

e2w + 1
,

which takes values in [−1, 1].
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3) ReLU (Rectified Linear Unit)

The ReLU activation function maps R to [0,∞). For any real input w,

ReLU(w) = max{ 0, w}.

2.5 How to learn NN parameters

Parameter Tuning in Logistic Regression (LR)

Recall the logistic model:
f(xi) =

1

1 + e−w⊤xi

Log-Likelihood:

logL(D) =
n∑

i=1

[
yi log

(
1

1 + e−w⊤xi

)
+ (1− yi) log

(
e−w⊤xi

1 + e−w⊤xi

)]

Loss Minimization View:

Minimize the negative log-likelihood:

arg min
w∈Rd+1

− logL(D)

Final Form: (highlighted)

arg min
w∈Rd+1

n∑
i=1

[
yi log

(
1 + e−w⊤xi

)
+ (1− yi) log

(
1 + ew

⊤xi

)]
Loss function:

ℓ(y, ŷ)→ R, e.g. ℓ(yi, ŷi) = yi log(ŷi) + (1− yi) log(1− ŷi)

Neural Networks: Same Idea for Parameter Tuning

For neural networks, parameters θ include weights from multiple layers:

θ =
(
W

(1)
1 ,W

(1)
2 , . . . ,W

(1)
k ,W (2)

)
∈ Rd

The network has (d+ 1)k + 2 parameters to tune, and the same optimization framework applies.

Likelihood Objective

Given dataset D, the likelihood function is:

L(D) =
n∏

i=1

f(xi)
⊮(yi=1)(1− f(xi))

⊮(yi=0)

22-10



Neural Network Model

f(xi) = NN
(
xi;w

(1)
1 , w

(1)
2 , . . . , w

(1)
k , w(2)

)
Let θ be the collection of all neural network parameters. Then the prediction function becomes:

fNN(xi) = NN(xi; θ), θ ∈ Θ

Loss Function

Define a general loss function:
ℓ : Y × Ŷ → R

Minimize training loss over data:

argmin
θ∈Θ

n∑
i=1

ℓ (yi, fNN(xi))

This represents the total training loss on D.

Optimization Strategy

Although ℓ is no longer convex in θ, even for simple loss functions like log-loss (cross-entropy loss), we still
solve for θ using gradient descent (GD).

2.6 Training Neural Networks: Gradient Descent and Backpropagation

Gradient Descent (GD)

Let θ0 be the initial estimate of parameters. For t = 1, 2, . . . :

θt+1 ← θt − η∇θL(D; θt)

This is standard Gradient Descent (GD) applied on θ using training loss L(D; θ).

Variants of GD

We can also use other variants of GD to improve computational efficiency:

1. Stochastic Gradient Descent (SGD)

2. Mini-batch SGD

Challenge: Computing Gradients

Computing∇θL(D; θ) is hard, since fNN(θ) is a complicated function.

Solution: Backpropagation

The solution is known as Backpropagation — a fancier name for the chain rule of differentiation.
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Next Lecture

The next lecture will cover the following topics:
(i) Backpropagation.
(ii) Forward Propagation.
(iii) Regularization in NN.
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