
CS 412 — Introduction to Machine Learning (UIC) April 12th, 2025

Lecture 22
Instructor: Aadirupa Saha Scribe(s): Haoxuan Wang

Overview

In the last lecture, we covered the following main topics:

1. K-Means clustering

2. Spectral clustering

3. Kernelized clustering

This lecture focuses on:

1. More discussion on spectral clustering

2. Basics of Neural Nets

1 Spectral Clustering

1.1 Some Preliminaries on Graph Cuts

Balanced Graph-Cutting

The goal is to cut a given graph G(V,E,W ) into two sets A and B such that:

• The weight of edges connecting vertices in A to those in B is minimized.

• The sizes of A and B are “quite similar” (i.e., balanced).

Graph Definition

Assume any graph G = (V,E,W ) where:

• V : set of vertices

• E: set of edges

• W : set of edge weights

For any two vertices i, j ∈ V , define:

eij = 1(i, j are connected), wij = weight on edge (i, j).

22-1



Figure 1: Example of a graph cut (Ref 2).

Graph Cut Definition

The weight of the cut between sets A and B is defined as:

Graph(A,B) :=
∑

i∈A,j∈B
wij .

This sum includes all edges crossing from set A to set B.

1.2 Formulations of the Graph Cut Problem

The problem can be formulated in several ways:

1. Balanced Cut:
min
A,B

Cut(A,B) s.t. |A| ≈ |B|

2. Ratio Cut:
min
A,B

Cut(A,B)

(
1

|A|
+

1

|B|

)
3. Normalized Cut:

min
A,B

Cut(A,B)

(
1

Vol(A)
+

1

Vol(B)

)
,

where:
Vol(A) =

∑
i∈A

di, and di =
∑

j:(i,j)∈E

wij (degree of vertex i)

22-2



Quadratic Form Representation of Cuts

To solve the above problems, define a vector f corresponding to the partition A,B, such that:

f = (f1, . . . , fn) ∈ {−1, 1}n, where n = |V |

fi =

{
1, if i ∈ Partition A
−1, if i ∈ Partition B

Then the cut can be rewritten as:

Cut(A,B) =
∑

i∈A, j∈B
wij

=
1

4

∑
i,j

wij(fi − fj)
2

=
1

2
f⊤(D −W )f

1.3 Relaxing the Balanced Graph Cut Problem

The balanced graph cut problem can be rewritten as the following discrete optimization problem:

Problem P1:

min
f∈{−1,1}n

f⊤Lf s.t. f⊤1 = 0, f⊤f = n

(The constraint f⊤1 = 0 enforces balance:
∑

i∈A fi = −
∑

j∈B fj = 0)

But this formulation is NP-hard. So, we consider a relaxation:

Problem P2:

min
f∈Rn

f⊤Lf

f⊤f
s.t. f⊤1 = 0

Approximation Guarantee of P2

Since P2 is an approximation of P1, what can we say about its guarantees? Can we say that a solution to P2 is
also “nearly good” for P1?

22-3



Theorem 1.1: Cheeger’s Inequality

If G is an undirected, regular graph (i.e., each vertex has the same degree d), then:

λ2

2
≤ min

A⊆V

Cut(A, V \A)

min(|A|, |V \A|)
≤
√
2λ2

where λ2 is the second smallest eigenvalue of the normalized Laplacian:

L = D−1/2(D −A)D−1/2

Moreover, a simple sorting-based algorithm can sort the eigenvector v2 (corresponding to λ2) to find a
partition A ⊆ V which is a

√
2λ2-approximate solution to the original balanced cut problem P1.

1.4 Properties of the Laplacian Matrix

• Laplacian L = D −W is always positive semidefinite (PSD).

0 ≤ λ1 ≤ λ2 ≤ · · · =⇒ All eigenvalues of L are nonnegative.

• The smallest eigenvalue λ1 is always 0:
λ1 = 0.

1 2

3

G: 1
2

3

4
5

6
Example 1 Example 2

Figure 2: Examples of graph structures (Left: Example 1; Right: Example 2).

Example 1: Graph G with 3 Nodes

We have three nodes: 1, 2, and 3 (Fig. 2). Edges connect node 1 to node 2, and node 1 to node 3. Hence the
adjacency matrix W (with Wij = 1 if nodes i and j share an edge, and 0 otherwise) is:

W =

0 1 1
1 0 0
1 0 0

 .

22-4



The degree matrix D is diagonal, where Dii is the degree of node i (the sum of the entries in row i of W ):

D =

2 0 0
0 1 0
0 0 1

 .

The graph Laplacian is defined as L = D −W . Substituting the matrices above, we get:

L = D −W =

2 0 0
0 1 0
0 0 1

−
0 1 1
1 0 0
1 0 0

 =

 2 −1 −1
−1 1 0
−1 0 1

 .

Suppose L is such that v1 (often the constant vector) is an eigenvector for the eigenvalue 0. In a simplified
form,

Lv1 =

 2 −1 · · ·
−1 2 · · ·

...
... . . .



1

1

...

 =


0

0
...

 .

This shows v1 is an eigenvector with eigenvalue 0, consistent with the property that L has at least one zero
eigenvalue.

Example 2: Two Disconnected Components

Consider a graph with nodes {1, 2, 3} forming one connected component and nodes {4, 5, 6} forming another,
each shaped like a simple chain (Fig. 2). Because there are no edges between these two sets, the Laplacian
matrix L is block-diagonal:

L =



1 −1 0 0 0 0
−1 2 −1 0 0 0
0 −1 1 0 0 0

0 0 0 1 −1 0
0 0 0 −1 2 −1
0 0 0 0 −1 1


.

Because this graph has at least two disconnected components, the Laplacian L will have multiple zero
eigenvalues. In the case of three disconnected components, for instance:

λ1 = 0, λ2 = 0, λ3 = 0,

with corresponding eigenvectors

v1 = [1, 1, 1, 1, 1, 1], v2 = [1, 1, 1, 0, 0, 0], v3 = [0, 0, 0, 1, 1, 1].

Each vi is constant (i.e., has the same value) on one of the disconnected components, reflecting the fact that L
has a separate zero eigenvalue for each component.

22-5



1.5 Spectral Embedding

Eigenvalues and Eigenvectors

From the graph Laplacian L, we obtain a set of eigenvalues and corresponding eigenvectors:

0 = λ1 ≤ λ2 ≤ λ3 ≤ · · · ≤ λd.

Each λi has an associated eigenvector vi.

Case: K = 2 Components

After applying spectral embedding with k = 2:

D̃ =


x1
x2
...
xn

 ∈ Rn×2,

where xi = (v2(i), v3(i)) are the entries from the second and third smallest eigenvectors of the Laplacian
matrix.

If x1 =
(
1
0

)
, x2 =

(
1
0

)
, x3 =

(
0
1

)
, then assign x1, x2 to cluster 1, and x3 to cluster 2.

General K-Dimensional Embedding

For a general K-way spectral clustering, Given eigenvalues:

0 = λ1 ≪ λ2 ≤ λ3 ≤ · · · ≤ λd with eigenvectors v1, v2, . . . , vd,

we take:
D̃ =

[
v2 v3 · · · vK+1

]
∈ Rn×K .

This serves as a new representation of the data in Rn×K , where v2, . . . , vK+1 correspond to the K smallest
nonzero eigenvalues of L. Each data point x(i) becomes a row in D̃, and then we can apply a standard
clustering method (e.g. K-Means) in this new K-dimensional space. This corresponds to finding a sparse
graph cut in the original graph, based on the eigenstructure of L.

Final Step:

Apply k-means on D̃ to identify the k clusters.

Remark 1. Reflect on these examples in the sparsest graph cut optimization view discussed above.

2 Neural Networks

In this lecture, we treat Neural Networks (NN) as a supervised learning framework for introduction.

22-6



2.1 Starting from Supervised Learning

We consider a dataset
D = {(x(1), y(1)), (x(2), y(2)), . . . , (x(n), y(n))},

where each x(i) ∈ Rd is a feature vector (an instance), and y(i) is a label, e.g. y(i) ∈ {0, 1} for binary
classification.

Classical Methods

Examples of supervised learning algorithms include:

• Logistic Regression (LR)

• Support Vector Machines (SVM)

These methods learn a predictor that maps x to the label y.

Recall Logistic Regression: In a simple 2D feature space, the logistic regression predictor attempts to
separate labeled points with a linear boundary. For a more complicated space, we can adopt a kernelized
version to seperate data points.
However, there is a limitation on knowing which kernel to use:

• Need to know which kernel k to use. Formally, the kernel corresponds to an implicit feature mapping
φ.

k(x, x′) ←→ ⟨φ(x), φ(x′)⟩.

If we lack domain knowledge to select k, how can we achieve φ, thereby obviating the need to hand-craft the
kernel?
Neural networks provide a more flexible framework for supervised learning. Like LR or SVM, they map x
to y, but use multiple layers of nonlinear transformations to capture complex decision boundaries.
Note: A neural network (NN) tries to learn φ (the embedding) by training the parameters of the NN (instead
of fixing φ ahead of time).

2.2 A Simple Single-Neuron Architecture

Let x ∈ Rd be an input vector with components {x1, x2, . . . , xd}. A basic neural network “neuron” can be
described by:

z =

d∑
i=1

wi xi + b,

where wi are the learned weights, and b is a bias term. We then apply an activation function σ, often the
sigmoid function:

σ(z) =
1

1 + e−z
,

to obtain the output f(x):

22-7



Figure 3: An illustration of a perceptron (Ref 2).

f(x) = σ
( d∑
i=1

wi xi + b
)
.

This output f(x) lies in the interval (0, 1) if σ is the sigmoid. Conceptually, each xi connects to the neuron
input with weight wi, and the neuron’s sum is offset by b. The illustration can be summarized as follows:

x1, x2, . . . , xd −−−→
inputs

(
linear sum: z

)
−−−→
bias b

−−−−−−→
activation σ

f(x).

2.3 One-Layer Neural Network

Figure 4: An illustration of a one layer NN. Ref 5.

22-8



Consider a neural network with input vector

(x0, x1, x2, . . . , xN , 1)⊤ where xN+1 = 1 is the bias term,

and K = 1 output neurons. Each output neuron k (k = 1, . . . ,K) computes an activation

yj = f
(N+1∑

i=0

w
(k)
i xi

)
,

where:

• w
(k)
i is the weight from input xi to output neuron k.

• f(·) is an activation function, often a sigmoid or ReLU. In the figure, f(z) = 1
1+e−z , which maps real

numbers to (0, 1).

Illustration:

x0 = 1, x1, x2, . . . , xd︸ ︷︷ ︸
inputs

−→
d∑

i=0

w
(1)
i xi

f−→ y1,

d∑
i=0

w
(2)
i xi

f−→ y2, . . .
d∑

i=0

w
(K)
i xi

f−→ yK .

Interpretation

• Each xi is connected to every output neuron k with a weight w(k)
i .

• The bias input xN+1 = 1 ensures each output neuron can learn an offset.

• The activation function σ is applied to the linear sum, creating a non-linear mapping from inputs to
outputs {yk}.

2.4 Types of Activation Functions

1) Sigmoid

The sigmoid (logistic) function maps R to the interval (0, 1). For w ∈ R,

σ(w) =
1

1 + e−w
.

2) Tanh (Hyperbolic Tangent)

The tanh function maps R to the interval [−1, 1]. For w ∈ R,

tanh(w) =
e2w − 1

e2w + 1
,

which takes values in [−1, 1].

22-9



3) ReLU (Rectified Linear Unit)

The ReLU activation function maps R to [0,∞). For any real input w,

ReLU(w) = max{ 0, w}.

2.5 How to learn NN parameters

Parameter Tuning in Logistic Regression (LR)

Recall the logistic model:
f(xi) =

1

1 + e−w⊤xi

Log-Likelihood:

logL(D) =
n∑

i=1

[
yi log

(
1

1 + e−w⊤xi

)
+ (1− yi) log

(
e−w⊤xi

1 + e−w⊤xi

)]

Loss Minimization View:

Minimize the negative log-likelihood:

arg min
w∈Rd+1

− logL(D)

Final Form: (highlighted)

arg min
w∈Rd+1

n∑
i=1

[
yi log

(
1 + e−w⊤xi

)
+ (1− yi) log

(
1 + ew

⊤xi

)]
Loss function:

ℓ(y, ŷ)→ R, e.g. ℓ(yi, ŷi) = yi log(ŷi) + (1− yi) log(1− ŷi)

Neural Networks: Same Idea for Parameter Tuning

For neural networks, parameters θ include weights from multiple layers:

θ =
(
W

(1)
1 ,W

(1)
2 , . . . ,W

(1)
k ,W (2)

)
∈ Rd

The network has (d+ 1)k + 2 parameters to tune, and the same optimization framework applies.

Likelihood Objective

Given dataset D, the likelihood function is:

L(D) =
n∏

i=1

f(xi)
⊮(yi=1)(1− f(xi))

⊮(yi=0)

22-10



Neural Network Model

f(xi) = NN
(
xi;w

(1)
1 , w

(1)
2 , . . . , w

(1)
k , w(2)

)
Let θ be the collection of all neural network parameters. Then the prediction function becomes:

fNN(xi) = NN(xi; θ), θ ∈ Θ

Loss Function

Define a general loss function:
ℓ : Y × Ŷ → R

Minimize training loss over data:

argmin
θ∈Θ

n∑
i=1

ℓ (yi, fNN(xi))

This represents the total training loss on D.

Optimization Strategy

Although ℓ is no longer convex in θ, even for simple loss functions like log-loss (cross-entropy loss), we still
solve for θ using gradient descent (GD).

2.6 Training Neural Networks: Gradient Descent and Backpropagation

Gradient Descent (GD)

Let θ0 be the initial estimate of parameters. For t = 1, 2, . . . :

θt+1 ← θt − η∇θL(D; θt)

This is standard Gradient Descent (GD) applied on θ using training loss L(D; θ).

Variants of GD

We can also use other variants of GD to improve computational efficiency:

1. Stochastic Gradient Descent (SGD)

2. Mini-batch SGD

Challenge: Computing Gradients

Computing∇θL(D; θ) is hard, since fNN(θ) is a complicated function.

Solution: Backpropagation

The solution is known as Backpropagation — a fancier name for the chain rule of differentiation.

22-11



Next Lecture

The next lecture will cover the following topics:
(i) Backpropagation.
(ii) Forward Propagation.
(iii) Regularization in NN.

References:

1. Lecture note by Ethan Fetaya, James Lucas and Emad Andrews from course CSC 411. Source

2. An Introduction to Graph-Cut by Paul Scovanner. Link

3. Lecture note by Mark A. Austin. Source

4. Blog on activation functions. Link

5. Blog on backpropagation. Link

6. ChatGPT, OpenAI

22-12

https://www.cs.toronto.edu/~jlucas/teaching/csc411/lectures/lec10_handout.pdf
https://www.cs.ucf.edu/courses/cap6411/cap6411/spring2006/Lecture11.pdf
https://user.eng.umd.edu/~austin/ence688p.d/lecture-material2020/neural-networks-part01.pdf
https://towardsdatascience.com/activation-functions-in-neural-networks-how-to-choose-the-right-one-cb20414c04e5/
https://blog.yani.ai/backpropagation/

	Spectral Clustering
	Some Preliminaries on Graph Cuts
	Formulations of the Graph Cut Problem
	Relaxing the Balanced Graph Cut Problem
	Properties of the Laplacian Matrix
	Spectral Embedding

	Neural Networks
	Starting from Supervised Learning
	A Simple Single-Neuron Architecture
	One-Layer Neural Network
	Types of Activation Functions
	How to learn NN parameters
	Training Neural Networks: Gradient Descent and Backpropagation


