CS 412 — Introduction to Machine Learning (UIC) April 15, 2025

Lecture 23
Instructor: Aadirupa Saha Scribe(s): Charles Pipim / Rithish Reddy Chichili

Overview
In the last lecture we covered the following topics:
* Spectral clustering (SC)

e Neural Net Intro

This lecture mainly focuses on the transition from Logistic Regression (LR) to deeper Neural Networks, and
the mathematical foundation behind training such models. The topics covered include:

¢ Feed-Forward Neural Network (FFNN)
* Back-Propagation (BP)

* Application of Chain Rule for differentiation

23-1

1 Logistic Regression Model for Classification
We consider a supervised learning task, where the goal is to learn a mapping:

f:X —{0,1}, where zeX CR?

Dataset

We are given a labeled dataset:

D= {(‘Thyl)u (IEQ,yQ), ey ('rnvyn)}v z; € Rda Yi S {07 1}

Architecture Diagram

Figure 1: Architecture of a Single Layer Feedforward Neural Network (FFNN)

Explanation of the Architecture Diagram

This diagram represents the computation performed by a single neuron in a logistic regression model or a
1-layer Feedforward Neural Network (FFNN):

* Input Nodes:

— xg = 1 is a bias input node, which is always fixed to 1.

- 1, %9,...,xq are the actual input features, where = € R%.
* Weights:

— Each input x; is associated with a corresponding weight w;.

— The weight wq corresponds to the bias term b, and is connected to the bias input z.

23-2

* Neuron Computation:

— The left half of the neuron (3) computes the linear combination:

d
z= Zwmi +b
i=1

— The right half (g) applies a non-linear activation function g(-) to the result:

¢ Output:
— The final output f(x) is typically our predicted output, i.e., 3.

Logistic Regression Prediction

Here we define the prediction function using the sigmoid (logistic) function as activation function:

1
14+ e~ (L, wizi+b)

d
f@) =g(z) = o> wiwi +b) =
i=1

Activation Function

Other activation functions g : R — R include:

2z _
* Tanh: tanh(z) = ﬁ

* ReLU: max(0, z)

Logistic Regression: Parameter Optimization

Let the model parameters be:
6= (w,b) eR'xR, weR?

Given dataset D = {(x;,y;) }1-, with y; € {0, 1}, the logistic regression model makes predictions as:

1

~ . — T - -
9= frr(z;w,b) =c(w z+0b) = 1+ e—(wTa+b)

Loss Function

We define the cross-entropy loss (log loss) function:

Uy, 9) = ylog g + (1 — y)log(1 — 9)

23-3

Log-Likelihood:

n

1 e_wil'i“"b
log L(D) = Z [yz' log (W) + (1 —y;)log <1+6_W)>]

=1
Loss Minimization View:
Minimize the negative log-likelihood:
argmin,, pega+1 — log L(D)

The optimization objective becomes:

n

argmin, yepas Y |:yi log (1 + ewm*b) + (1 — ;) log <1 4 ewz‘wi—kb)}
i=1

23-4

2 Multi Layer Feedforward Neural Network (FFNN)

When we go beyond a single-layer logistic regression model, we introduce one or more hidden layers
consisting of multiple neurons. Each neuron performs a weighted sum of its inputs followed by a non-linear
activation function g. This architecture is called a Multi Layer Feedforward Neural Network (FFNN).

We consider a FFNN with:
* Input dimension d

* One hidden layer with k& neurons

* Output is a scalar (for binary classification)

Figure 2: Architecture of a Multi Layer Feedforward Neural Network (FFNN) with One Hidden Layer of &

Neurons

23-5

Forward Pass Equations and Dimensions

Input: Let the input be a vector 2 € R?, and let us augment it with a bias node 2 = 1, resulting in:

Zo
X1
T2| € Rd+1

K
Il

Zd

Hidden Layer: We have k hidden neurons. Each hidden neuron receives all d inputs and a separate bias
term:

lewz(ll) + b(1 = u; = g(ay)

Zx,fwg) + b(1 = ug = g(ag)

lew(l) + b(= ug = g(ag)

where g(+) is the activation function (e.g., sigmoid, tanh, ReLU).

Augment Hidden Activations: Add bias unit ug = 1, so:

Uug
U1
uz| e Rk+1, ug =1

s
Il

Uk_

Output Layer: The final output is a linear combination of hidden layer outputs and an explicit bias:
k
-2 +4%

f(z;0) = g(2)
Where:

o« W2 c R
« b eR

23-6

Final Form: Using matrix-vector notation:

T T
f(z;0) =g (W(Q) U+ b(Q)) =g (W(2) gWWOTz 4+ pV) 4 b(2)>

where 6 = {VVm7 b, W@, b} are the parameters of the FENN.

First layer weight matrix W) ¢ RFx4:

1 1) (1)

whl) wg) w%f)
wo = [V Wz e W
o« . (1
Wy w((m) w((ik)
« Second layer weight vector W2 ¢ RF:
2
o
W@ — |2
2)
Wi,
« First layer bias vector b(!) € R¥:
pt)
(1)
» — |2
M)
by

« Second layer bias b € R

Dimensions:
» Input vector: & € R+
« First layer weights: W (1) e RFxd
* First layer bias: b(1) € R¥
* Hidden activations: @ € RF*!
« Second layer weights: W (2 ¢ RF
« Second layer bias: b € R
* Output: f(z;0) € R

23-7

Simplified Forward Pass (No Augmentation)
Input: z € R4*!

. i o ~d (D) (1) .
Compute hidden pre-activations: a; = > ;| z;w; ; +b forj=1tok
Compute hidden activations: u; = g(a;) for j = 1to k
Compute output pre-activation: z = Z;?:l ujwj(?))

Compute final output: § = f(x;0) = g(2)
Output: g € R

DR PR S

3 Training FFNN Parameters: Backpropagation and Optimization

Once the FFNN architecture is defined, we train the model by minimizing a loss function over the training
dataset. The most commonly used loss for binary classification is the cross-entropy loss.

3.1 Gradient-Based Optimization

We aim to minimize the empirical loss (risk):

L£(0) = %Zﬁ(yz’, f(z3;0))
=1

Where § = {WM), (1) W2 b(2)} and ¢ is typically the binary cross-entropy loss.

Gradient Descent (GD): Update parameters using the full dataset:
0+ 0—nVyL(0)

Where 7 is the learning rate.

Stochastic Gradient Descent (SGD): Update parameters using a single example (x;, y;):

0 < 0 —nVol(y;, f(zi;6))

Mini-batch Gradient Descent: Update parameters using a batch of m samples:

1 m
0+« 60— n— E Vol(yi, f(xi;0))
i1

3.2 Backpropagation Algorithm and Chain Rule in a Two-Layer Neural Network

This section elaborates on the backpropagation algorithm for training a two-layer feedforward neural network,
consistent with the forward pass definitions established earlier. We will detail the computation of gradients
using the chain rule, which is crucial for updating the network’s parameters (weights and biases) to minimize
a chosen loss function.

23-8

Initialization

At the beginning of the training process (¢ = 0), the parameters of our neural network are initialized randomly.
These parameters include the weight matrix for the hidden layer (W (1), the bias vector for the hidden layer
(b)), the weight vector for the output layer (W (), and the bias scalar for the output layer (b?)). Their
dimensions are as follows:

* First layer weight matrix: W (1) ¢ RF*d
* First layer bias vector: b € RF
« Second layer weight vector: W(2) e R¥

« Second layer bias: b2 € R

Forward Pass (Recap)

Given an input vector x € R? (augmented with a bias g = 1 to form & € R?+1), the forward pass through
the network is computed as follows:

1. Pre-activation of the hidden layer: The weighted sum of the inputs plus the bias for each hidden
neuron is calculated:
V) =wOTz 4 p@)

Here, a(!) € R is the vector of pre-activations for the & hidden neurons. Note that we are using W (1T

here as in our final form equation, and & includes the bias term. However, based on our initial hidden
layer equations, the bias b(!) is added element-wise after the multiplication with the input z (not Z). To
be consistent with the majority of neural network literature and our final form, let’s assume the bias is
handled within the weight matrix by augmenting the input. If we strictly follow our initial equations, the
pre-activation would be al(.l) = Z?Zl xjwj(-;)+ bgl). For matrix notation, and aligning with the final
form involving Z, we should consider the weight matrix W) to be k x (d+ 1) and 7 as the augmented
input(i.e input 29 = 1 w.r.t bias). However, our dimension for W) is k x d. Let’s proceed by treating
the bias separately as in our hidden and output layer equations for clarity in the backward pass.

d
agl) = ijwj(.zl) + bl(l) fori=1,....k
7=1

In vector form: a) = Wz + b1, where W) € RF*4, 4 ¢ RY, and b(D) € R¥,

2. Activation of the hidden layer: An activation function g(-) is applied element-wise to the pre-activations
to produce the hidden layer activations:

u=gla)

Here, u € RF is the vector of activations of the & hidden neurons.

3. Pre-activation of the output layer: The output layer receives the activations from the hidden layer,
and a weighted sum with the output bias is computed:

= WOy 4

Here, W(?) € R” is a column vector of weights connecting the hidden layer to the single output neuron,
and b(®) € R is the output bias. The pre-activation z is a scalar.

23-9

4. Activation of the output layer: Finally, an activation function g(-) is applied to the output pre-activation
to produce the network’s output:

§=9(z) = g(WTu+5)
The output y € R (assuming a single output neuron). For binary classification, g is often the sigmoid
function, resulting in an output between 0 and 1.

Loss Function

For a single training example (z, y), where y is the true label, we use a loss function L(y,) to quantify the
error between the predicted output ¢ and the true label y. A common choice for binary classification is the
binary cross-entropy loss:

L(y,) = —ylog(y) — (1 — y)log(1 — 9)
Backward Pass: Gradient Computation
The core of backpropagation is the efficient computation of the gradients of the loss function with respect to
each of the network’s parameters. This is achieved by applying the chain rule of differentiation, propagating
the error backward from the output layer to the input layer.
Gradient with respect to the output layer weights (17 (2)

We want to compute %. Using the chain rule:

OL 0Ldj 02
W@ 9y 0z oW @

Let’s compute each term:

1. Derivative of the loss with respect to the output activation:

oL 1-—
e
o g 1—9

2. Derivative of the output activation with respect to the output pre-activation (assuming sigmoid

9(z) = 1+i—z):

W = Ly = o)1~ g(2)) = 90—)

3. Derivative of the output pre-activation with respect to the output layer weights:

k
=Wy 4+ = Zw](-2)uj + b2

j=1

Therefore, the derivative of z with respect to each element wZ@) of W® is:
0z
ouw® UZ

1

23-10

U1

U2

0z _ — 4 = . |. Since L is a scalar and W@ is a vector

> oW (2)

OL

In vector form s S

5y will be a row
Uk

vector (if we follow numerator layout convention) or a column vector (denominator layout). Consistent
with most gradient descent updates where the gradient has the same shape as the parameter, we consider

it a column vector here. oL .
Y -y R N
pr— —— . 1 — .
ow 2 (7 + 1— 3}) o g)-u

Simplifying the first two terms:

oL
ow@

Gradient with respect to the output layer bias (b(2))

We want to compute Using the chain rule:

8b(2)
oL %@ 0z
b g 02 b

99 .
We already have and 5.+ Now we need ab<2> :

2=WATy 4 b3

0z
o
Putting it together:

oL y 1l—y\ . . A
(%(2)_< 5 1—@) gr-9)-1=g-y

Gradient with respect to the hidden layer weights (1 ()

We want to compute Using the chain rule:

aW<1)

OL 0L9j0z du 9dalV)

oW 9y 0z Ou daV) ow ()

We already have and 8y . Let’s compute the remaining terms:

1. Derivative of the output pre-activation with respect to the hidden layer activations:

k
2=WATy 4+ = Z’U)J(-Z)Uj + b
j=1

82 (2)
ou; — Wi

23-11

In vector form, gz =w® =

2. Derivative of the hidden layer activations with respect to the hidden layer pre-activations (assuming

sigmoid g(az(l)) = i ay):
1+e %
u; = g(al")
O (1) (1)
P 1 g(ai)(1— g(ai) = ui(1l — w;)
a;

This is an element-wise product. In vector form, - (1 = diag(u) (I — diag(u)), where diag(u) is a
diagonal matrix with the elements of u on the diagonal, or more simply, an element-wise multiplication
© (1 —u).

3. Derivative of the hidden layer pre-activations with respect to the hidden layer weights:

aD — Wy 4)

d
=3 wlPay + 1)

=

For the entire weight matrix W) e RF¥4 the derivative aa D > is a third-order tensor. However, when

considering the gradient of the loss with respect to 171), the dimensions will align. Let’s look at the
(1).

contribution to each w; ; S

oL 9Ly 0z du; dalV

ng) 9y 0z Ou; 8(1() 8w(1)
oL .
= = e)
ij

In matrix form:
oL

ow @)

Here, ® denotes element-wise multiplication, and z ' is the transpose of the input vector (a row vector).

—@G-y) WP o we (@l -u) 2"

Gradient with respect to the hidden layer biases (b(1))

We want to compute Using the chain rule:

8b(1)

OL 9L0j0z Ou daV)

ob) 9y 9z Ou Ha® 9p()

23-12

We have most of these terms already. The last term is:

da) 0
20 = goo W) =1

(1)
where [is the k£ x k identity matrix, implying that Z:é” = 1if 7 = j and O otherwise. Effectively, ‘32—8)) acts

as selecting the appropriate element. Thus, in component form:

datV
a0
Putting it together:
0L)
m:(y—y)'wm)@(“@(l—u))‘l

Here, the multiplication by 1 is element-wise, resulting in:

oL .
W:(y—y)'(w(m@lb@(l—“))

Gradient Descent Update

Once the gradients are computed, the parameters of the network are updated using an optimization algorithm
like gradient descent:

» Update rule for the output layer weights:

oL
(2 (2 _
W «— W n WD
» Update rule for the output layer bias:
oL
(2) 2 _, 7=
b\ «—b n ETe)
» Update rule for the hidden layer weights:
oL
(1 1 _
W\ «— W n ET%0)
* Update rule for the hidden layer biases:
oL
(1) n _ =
b\ «— b n ETE)

where 7 is the learning rate, a hyperparameter that controls the step size of the updates.
This iterative process of forward pass, loss computation, backward pass (gradient computation), and parameter
update is repeated for a number of epochs or until a satisfactory level of performance is achieved.

23-13

Backpropagation Algorithm

Algorithm 3.1:

1: Given a 2-layer NN, Initialize weights W), W (2) and biases b)), 5 randomly
2: for each training example (z,y) do

3: Forward pass:

4: Compute hidden activations u = g(W 0Tz 4+ (1))

5: Compute output § = g(W @ Ty, + b))

6: Compute loss: L(y,)

Te Backward pass:

8: Compute gradients using the chain rule

9: Update parameters:
10: WO W@ p1) p(2) « updated via gradient descent
11: end for

23-14

4 Backpropagation Example: 2-Layer NN

This document illustrates the backpropagation algorithm for a neural network with 2 input features, 2 hidden
neurons, and 1 output neuron over three iterations. We use the sigmoid activation function g(x) = H% and
the binary cross-entropy loss L(y, y) = —ylog(y) — (1 — y) log(1 — ¢). The learning rate 7 is set to 0.5.

Initialization

Initial weights and biases:

w_[o1 04] 4y _[03
W [0.2 05" ° 0.6

Training example: © = Bg] ,y=1.

+b(2) = 0.9

<<

Figure 3: Example Architecture (2-2-1) of a Multi Layer NN

Iteration 1
Forward Pass

0 _ o m _ [0.1 0.4] [LO] | [0.3] _ [L2
@l =W b [0.2 0.5] [2.0) T o.6] = |18

=)= (3]~ o]

2=WPTy +53 = [0.7 0.8] [0'7685

0.8581} + 0.9 =~ 2.1244

§ = g(2) = g(2.1244) ~ 0.8934

23-15

Loss:
L=—1-10g(0.8934) — 0 - log(1 — 0.8934) ~ 0.1122

Backward Pass

Gradients:

oL y 11— 1
=2 — ~ —1.11
oy + 1- - 0.8934 93
gg = g)(l —) = 0.8934(1 —0.8934) ~ 0.0953
0z [0.7685
ow® — "7 |0.8581
0z
b2
ou__ o (1 u)= 0.7685(1 — 0.7685)] _ [0.1779
oaD) ~10.8581(1 — 0.8581)| ~ [0.1217
daM) T
S =t = (1.0 2.0]

da) 1
b M

Gradient of Loss w.r.t. parameters:

=1

OL OLdj 0z
W@) 9z oW @)
oL 0L 8@ 0z
(%(~ 0§ 0z b

0L 0y 873 ou T
oy 0z 8u da(l)

0.7685] _ [—0.08196
= (—1.1193)(0.0953) [0_8581] ~ [_0.09153]

= (—1.1193)(0.0953)(1) ~ —0.1067

= ((~1.1193)(0.0953) [0'7] o [0-1779

oe] @ [o1aa 110 20

0.07466 0.1779
~ [008533] [0.1217]) 10 2.9]
- [—0.01328} 1.0 20] = [—().01328 —0.02656}
—0.01038 —0.01038 —0.02076
oL 0L 0y 0z ou 1
) <agaz8u® aam) ' M
_ [—0.01328}
—0.01038

23-16

Parameter Updates

oL [0.7 —0.08196] _ [0.7410
@ e _ _[o7] - o
W e e _0.8} 05 [—0.09153] [0.8458]

oL
b
oL Jo.1 0.4] 05 [—0.01328 —0.02656}

1 O _ 7=
WEew n@W(l) 0.2 0.5 —0.01038 —0.02076

b 1) oL _ {0.3] 05 [—0.01328} - [0.3066}

b2 — b3 —

= 0.9 — 0.5(—0.1067) ~ 0.9534

0.1066 0.4133

~

~ [0.2052 0.5104]

0.6 —0.01038 0.6052

Iteration 2
Forward Pass
Using updated parameters:

_[1.2398

(1) _)y _ [01066 0.4133] [1.0] | [0.3066] _
@ =Whedb _{ 1.8312

0.2052 0.5104] (2.0 0.6052

_ 1)y _ 9(1.2398) . 10.7757
u=g(a®) [9(1.8312) ~ 10.8618

0.7757

W @Ty g p@) = ~
2=WTy 5@ = [0.7410 0.8458] {0.8618} +0.9534 ~ 2.1885

§ = g(z) = g(2.1885) ~ 0.8993

Loss:
L =—1-10g(0.8993) — 0 - log(1 — 0.8993) ~ 0.1061

Backward Pass

Gradients:
?ﬁ ~ —1.1120
7
gi{ ~ 0.0900

0z _[0.7757
ow® ~ "7 o.8618

0z

@ !

Ou _[0.1745
9a® ~10.1191
da)

T = ' =[1.0 2.0]

da) 1
b M

Gradient of Loss w.r.t. parameters:

oL
oW (2)
oL
b
oL
ow @)
oL

b

)

Parameter Updates

w®
b2
1

w®

1)

B

Iteration 3
Forward Pass

Using updated parameters:
o =wWg 4 p) = [

~
~

0.7825
u=g(a®) [0.8653]

=Wy 4@ = [0.7785 0.8874] [

7= g(z) ~ 0.9042

Loss:

0.1131 0.4257| |1.0 n 0.3130
0.2102 0.5204]| |2.0 0.6102

~
~

[—0.0749
| —0.0832

~ —0.1001

[—0.0129
| —0.0100

[—0.0129
|—0.0100

~
~

—0.0258
—0.0200

%

~
~

[0.7785
10.8874

~ 1.0035

[0.1131 0.4257
10.2102 0.5204

[0.3130
10.6102

~
~

~
~

~
~

1.8610

|

} + 1.0035 ~ 2.2488

1.2775}

0.7825
0.8653

L = —1-10g(0.9042) — 0 - log(1 — 0.9042) ~ 0.1010

23-18

Backward Pass

Gradients:
oL
=~ —1.1059
a7
% ~ 0.0860
0z _[0.7825
o @ ~ 7 0.8653
0z
@ L
du _[o.1701
9a® 7 10.1168
aa(l) T
D =% = (1.0 2.0]

Gradient of Loss w.r.t. parameters:

~
~

OL [—0.0737]

oW () —0.0816
L
8?)(2) ~ —0.0950

0L [-0.0125 —0.0250
ow® | -0.0097 —0.0194

OL [—0.0125]

b ~ 1-0.0097

Parameter Updates

(2) o, [0-8154
w 10.9282
@ ~1.0510

) & [0-11940.4382
~ 102150 0.5298

p1) ~ [0-3193
"~ 10.6150

23-19

Summary Table

Iteration Predicted Output (§) Loss (L) Weights (W1, 17 (2)) Bias (v, b))
0.1 0.4 0.7 0.3
1) — (2) — (1) — (2) —
1 0.8934 0.1122 1% |:0.2 0.5:| , W {0.8] b {0.6] ,b 0.9
0.1066 0.4133 0.7410 0.3066
1) ~ (2) =~ (1) ~ (2) ~ U.
2 0.8993 0.1061 1% [0.2052 0_5104}, 1% |:0.8458} b |: 6052]’(] 0.9534

3 0.9042 01010 WO ~ [0.1131 0.4257}‘/‘/(2>z {0.7785}) ~ {0.3130

@) .
0.2102 0.5204 0.8874 0.6102] , b = 1.0035

Table 1: Summary of Parameter Optimization with Backpropagation over 3 Iterations

Next Lecture

The next lecture will cover the following topics:
(i) Backpropagation (contd)

(i) RNN

(iii) CNN (Intro)

References

[1] D. Rumelhart, G. Hinton, and R. Williams, Learning representations by back-propagating errors, Nature,
1986.

[2] Y. LeCun, L. Bottou, Y. Bengio, and P. Haftner, Gradient-based learning applied to document recognition,
Proceedings of the IEEE, 1998.

[3] Y. Bengio, R. Ducharme, P. Vincent, and C. Jauvin, A neural probabilistic language model, JMLR, 2003.

[4] J. Schmidhuber, Deep learning in neural networks: An overview, Neural Networks, 2015.

23-20

	Logistic Regression Model for Classification
	Multi Layer Feedforward Neural Network (FFNN)
	Training FFNN Parameters: Backpropagation and Optimization
	Gradient-Based Optimization
	Backpropagation Algorithm and Chain Rule in a Two-Layer Neural Network

	Backpropagation Example: 2-Layer NN

