
CS 412 — Introduction to Machine Learning (UIC) April 24, 2025

Lecture 26
Instructor: Aadirupa Saha Scribe(s): Amith Bhat Hosadurga Anand

[This draft is not fully proofread. Please email any typos/errors to the scribe/instructor or directly edit the file.]

Overview

In the last lecture, we covered the following main topics:

1. CNN

2. Dropout regularization

3. Vanishing & Exploding Gradients (VE-Grads)

4. RNN-LSTM

This lecture focuses on:

1. Properties of (Multivariate) Gaussian Distribution

2. Gaussian Process: A Bayesian Regression Technique

1 Properties of (Multivariate) Gaussian Distribution

1.1 Preliminaries

Definition 1 (Multivariate Gaussian). A random variable X ∈ Rd is said to follow MVG distribution with
mean and covariance parameters µ ∈ Rd and Σ ∈ Rd×d (where Σ is positive semi-definite), if:

P (X = x;µ,Σ) =
1

(2π)d/2|Σ|1/2
exp

(
−1

2
(x− µ)⊤Σ−1(x− µ)

)
where |Σ| denotes the determinant of the covariance matrix Σ ∈ Rd×d.

Remark 1. Special case: If Σ is diagonal, then all the d coordinates of the random variables are independent.
Note that the diagonal entries MUST be positive, and Σ has to be positive semi-definite (PSD).
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1.2 Notation

Before we begin with the properties, let us define some notation.
Assume the d-coordinates of X can be partitioned into two sets A and B, such that A ∪B = [d].
Without loss of generality, let A = {1, 2, . . . , r}, for some 1 ≤ r < d, and hence B = {r + 1, . . . , d},

So for any realization ‘x’ in X , we will denote

x =

[
xA

xB

]
, µ =

[
µA

µB

]
, Σ =

[
ΣAA ΣAB

ΣBA ΣBB

]
where µA ∈ Rr, µB ∈ Rd−r

ΣAA ∈ Rr×r, ΣAB ∈ Rr×(d−r), ΣBA ∈ R(d−r)×r and ΣBB ∈ R(d−r)×(d−r)

Another method of deriving the dimensions of the partitions of the covariance matrix is through the definition
of the covariance matrix

Σ = EX∼P(·|µ,Σ)

[
(X − µ)(X − µ)⊤

]
Further,

ΣAA = EX∼P(·|µ,Σ)

[
(xA − µA)(xA − µA)

⊤
]
= Σ⊤

AA ∈ Rr×r

Similarly,

ΣBB = EX∼P(·|µ,Σ)

[
(xB − µB)(xB − µB)

⊤
]
= Σ⊤

BB ∈ R(d−r)×(d−r)

and lastly:
ΣAB = EX∼P(·|µ,Σ)

[
(xA − µA)(xB − µB)

⊤
]

∈ Rr×(d−r)

= Σ⊤
BA ∈ Rr×(d−r)

1.3 Properties

Definition 2. Marginals
The marginal probability distributions of a subset of random variables are obtained by integrating out the
remaining variables. Specifically, for a random vector X with partitioned components XA and XB , the
marginal probability distribution of XA is given by:

P (XA = xA) =

∫
xB

P

(
X =

[
xA
xB

]
;µ,Σ

)
dxB

Similarly, the marginal probability distribution of XB is given by:

P (XB = xB) =

∫
xA

P

(
X =

[
xA
xB

]
;µ,Σ

)
dxA
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1.3.1 Property 1

Theorem 1.1: Marginal Distributions

XA ∼ N (µA,ΣAA), which is a MVG with mean µA and covariance
∑

AA and
XB ∼ N (µB,ΣBB), which is a MVG with mean µB and covariance

∑
BB .

Proof:
Note: The presented proof is not from class but is included here for completeness.
The proof follows from computing the marginal integrals and integrating out the irrelevant variables but there
is a less computation heavy proof, based on the theory of multivariate normal distributions and follows from
the general principles of linear transformations in multivariate normal distributions. For exact details, see the
proof in the reference: Marginal distributions of the multivariate normal distribution.

We are given that X =

[
XA

XB

]
∼ N (µ,Σ), where: µ =

[
µA

µB

]
, Σ =

[
ΣAA ΣAB

ΣBA ΣBB

]
Let us derive the marginal distribution of XA. The marginal distribution of XB follows a similar structure

Step 1: Define the Subset Matrix S:
For the marginal distribution of XA, define the subset matrix S, which extracts the elements corresponding to
XA from the full vector X . In this case, we define S as a r × d matrix such that:

S =
[
Ir 0

]
Where Ir is the r × r identity matrix, and 0 is the zero matrix of size r × (d− r). This matrix S selects the
first r-dimensional vector XA from the full vector X , so:

XA = SX

Step 2: Apply the Linear Transformation Theorem:
By the Linear Transformation Theorem, since X ∼ N (µ,Σ), we know that:

XA ∼ N (Sµ, SΣST )

Substitute S =
[
Ir 0

]
into the equation:

Sµ =
[
Ir 0

] [µA

µB

]
= µA

Thus, the mean of XA is µA.
Now, compute the covariance matrix SΣST :

SΣST =
[
Ir 0

] [ΣAA ΣAB

ΣBA ΣBB

] [
Ir
0

]
This simplifies to: SΣST = ΣAA

Thus, the marginal distribution of XA is: XA ∼ N (µA,ΣAA)
Similarly, the marginal distribution of XB is: XB ∼ N (µB,ΣBB)

(
Use S =

[
0 Id−r

])
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Definition 3. Conditional Distribution
We begin with the conditional distribution of XA = xA given XB = xB where xA and xB are the given
realized values of XA and XB:

P (XA = xA | XB = xB) =
P (XA = xA ∩XB = xB)

P (XB = xB)

=

P

(
X =

[
xA
xB

]
;µ,Σ

)
P (XB = xB;µB,ΣBB)

( denominator follows from Property 1)

Similarly:

P (XB = xB | XA = xA) =

P

(
X =

[
xA
xB

]
;µ,Σ

)
P (XA = xA;µA,ΣAA)

(again, denominator follows from Property 1)

1.3.2 Property 2

Theorem 1.2: Conditional Distributions

a) P (XA | XB = xB) ∼ N
(
µA +ΣABΣ

−1
BB(xB − µB), ΣAA − ΣABΣ

−1
BBΣBA

)
b) P (XB | XA = xA) ∼ N

(
µB +ΣBAΣ

−1
AA(xA − µA), ΣBB − ΣBAΣ

−1
AAΣAB

)
Proof: We will prove Property 2a as 2b will follow a similar analysis.
Note, by definition of conditional probability, we have:

P (XA = xA | XB = xB) =

P

(
X =

[
xA
xB

]
;µ,Σ

)
P (XB = xB)

Substitute the terms and simplify:

P (XA = xA | XB = xB) =

1
(2π)d/2 |Σ|1/2 exp

(
−1

2(x− µ)TΣ−1(x− µ)
)

P (XB = xB)

Since P (XB = xB) is independent of xA, we can group it, along with 1
(2π)d/2 |Σ|1/2 as a constant Z1

This simplifies to:

P (XA = xA | XB = xB) =
1

Z1
exp

(
−1

2

([
xA
xB

]
−
[
µA

µB

])T

Σ−1

([
xA
xB

]
−
[
µA

µB

]))
We can write

Σ−1 =

[
ΣAA ΣAB

ΣBA ΣBB

]−1

=

[
VAA VAB

VBA VBB

]
Thus, the conditional distribution can be written as:

P (XA = xA | XB = xB) =
1

Z1
exp

(
−1

2

([
xA
xB

]
−
[
µA

µB

])T [
VAA VAB

VBA VBB

]([
xA
xB

]
−
[
µA

µB

]))
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Expanding the matrices we get:

1

Z1
exp

[
−1

2

(
(xA − µA)

T VAA (xA − µA) + (xA − µA)
T VAB (xB − µB)

+ (xB − µB)
T VBA (xA − µA) + (xB − µB)

T VBB (xB − µB)
)]

Let us separate the terms independent of xA, since we want to understand the distribution of XA | XB = xB:

=
1

Z2
exp

[
−1

2

(
xTAVAAxA − 2xTAVAAµA + 2xTAVAB(xB − µB)

)]
where

1

Z2
=

1

Z1
exp

[
−1

2

(
µT
AVAAµA − 2µT

AVAB(xB − µB) + (xB − µB)
TVBB(xB − µB)

)]
Which are all the terms independent of xA

This simplifies to:

=
1

Z3
exp

(
−1

2

[
xA − µ′

A

]T
VAA

[
xA − µ′

A

])
⋆

where:
µ′
A = µA − V −1

AAVAB(xB − µB) ∈ Rr

and Z3 is adjusted accordingly.

The dimension of µ′
A follows as µA ∈ Rr, V −1

AA ∈ Rr×r, VAB ∈ Rr×(d−r) and (xB − µB) ∈ R(d−r)×1

Further noting that,[
VAA VAB

VBA VBB

]
=

[
=
(
ΣAA − ΣABΣ

−1
BBΣBA

)−1 −(ΣAA − ΣABΣ
−1
BBΣBA)

−1ΣABΣ
−1
BB)

−Σ−1
BBΣBA

(
ΣAA − ΣABΣ

−1
BBΣBA

)−1
(ΣBB − ΣBAΣ

−1
AAΣAB)

−1

]

which can be proved by matrix inversion technique.
The generalized process of obtaining such inversions can be referred to in this article on Schur Complement.

The form of ⋆ above justifies:

P (XA | XB = xB) ∼ N (µ′
A, VAA) = N

(
µA +ΣABΣ

−1
BB(xB − µB),ΣAA − ΣABΣ

−1
BBΣBA

)
A similar sequence of steps can be followed to obtain 2b.
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An Alternative (Easier/More Intuitive) Proof of Property 2
Note the above proof starts with the expression of P (XA = xA | XB = xB) using conditional probability
and tries to rearrange the terms to obtain another Multivariate Gaussian distribution expression whose mean
and covariance turn out to be µ′

A and VAA, after some useful regrouping of the terms.

However, since P (XA) ∼ N (µA,ΣAA) and P (XB) ∼ N (µB,ΣBB),
and we know that the conditional distribution of MVG is also another MVG, we know that:

P (XA = xA | XB = xB) ∼ N (µ̃, Σ̃) for some µ̃ ∈ Rr and Σ̃ ∈ Rr×r (PSD).

Our goal is to find µ̃ and Σ̃.
To find µ̃, we note that we derived above that:

P (XA = xA | XB = xB) =
1

Z2
exp

(
−1

2

[
xTAVAAxA − 2xTAVAAµA + (xB − µB)

TVBB(xB − µB)
])

(1)

Now since P (XA | XB) ∼ N (µ̃, Σ̃), with µ̃ and Σ̃ unknown.
Now we know the maximum density of any MVG is achieved at its mean. Hence, to find µ̃ (the mean of
MVG P (XA | XB)), we maximize Equation 1 with respect to xA

arg max
xA∈Rr

P (XA = xA | XB = xB)

= arg max
xA∈Rr

[
1

Z2
exp

(
−1

2

[
xTAVAAxA − 2xTAVAAµA + 2xTAVAB(xB − µB)

])]
Which is equivalent to maximizing,

= arg max
xA∈Rr

[
xTAVAAxA − 2xTAVAAµA + 2xTAVAB(xB − µB)

]
Let f(xA) = xTAVAAxA − 2xTAVAAµA + 2xTAVAB(xB − µB)
Then,

∇f(xA) = 2VAAxA − 2VAAµA + 2VAB(xB − µB)

and
∇2f(xA) = VAA ⪰ 0

Which is PSD since we know that VAA

(
ΣAA − ΣABΣ

−1
BBΣBA

)−1

=⇒ The maximum is achieved at: ∇f(x∗A) = 0

⇒ VAA · x∗A = VAA · µA − VAB(xB − µB)

⇒ x∗A = µA − V −1
AAVAB(xB − µB) (2)

But noting that V −1
AA = (ΣAA−ΣABΣ

−1
BBΣBA) and VAB = −(ΣAA−ΣABΣ

−1
BBΣBA)ΣABΣ

−1
BB , we obtain:

V −1
AAVAB = −ΣABΣ

−1
BB (from Eq(2))
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Thus, we get:
x∗A = µA +ΣABΣ

−1
BB(xB − µB) as desired.

So we have:
µ̃ = x∗A = µA +ΣABΣ

−1
BB(xB − µB)

To find Σ:
Again, since P (XA | XB) ∼ N (µ̃, Σ̃), we know that the Hessian of MVG density is Σ̃−1.
But Equation (3) gives:

∇2f(x∗A) = VAA

Thus:
Σ̃−1 = VAA ⇒ Σ̃ = V −1

AA ⇒ Σ̃ =
(
ΣAA − ΣABΣ

−1
BBΣBA

)−1

Σ̃ =
(
ΣAA − ΣABΣ

−1
BBΣBA

)−1 as desired.

1.3.3 Property 3

Theorem 1.3: Independence

If X and Y are two RVs following

X ∼ N (µ1,Σ1) and Y ∼ N (µ2,Σ2),

respectively, then:

X + Y ∼ N (µ1 + µ2,Σ1 +Σ2) if X and Y are independent X ⊥ Y.

Proof: The proof follows by analyzing the density of X + Y and exploiting the fact that X ⊥ Y
Note: The presented proof is not from class but is included here for completeness.
Let Z = X + Y . The sum Z is a linear combination of the random variables X and Y , and due to the
linearity of normal distributions, Z must also follow a normal distribution.
The mean of Z is:

E[Z] = E[X] + E[Y ] = µ1 + µ2

The covariance of Z is:

Cov(Z) = Cov(X + Y ) = Cov(X) + Cov(Y ) + 2 · Cov(X,Y )

Since X and Y are independent, Cov(X,Y ) = 0, so:

Cov(Z) = Σ1 +Σ2

Thus, the sum of two independent normally distributed random variables X and Y is normally distributed
with mean µ1 + µ2 and covariance Σ1 +Σ2:

X + Y ∼ N (µ1 + µ2,Σ1 +Σ2)
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2 Gaussian Processes (GP): A Bayesian Regression Technique

2.1 Gaussian Process Inference

GP (Gaussian Processes) is a method for modeling probability distributions over functions, which can be used
to infer function values at unknown datapoints (i.e essentially regression tasks) using the properties of MVG
we studied above.
More specifically, we say that f : Rd → R follows a GP with mean function m(·) and covariance function
k(·, ·) if for any x ∈ domain(f) ⊆ Rd,

f(x) ∼ N (m(x), k(x, x))

and for any sequence of datapoints x1, . . . , xn ∈ Rd,f(x1)
...

f(xn)

 ∼ N


m(x1)

...
m(xn)

 ,

k(x1, x1) · · · k(x1, xn)
... . . . ...

k(xn, x1) · · · k(xn, xn)




where:

• The vector

m(x1)
...

m(xn)

 ∈ Rn, represents the mean of the MVG for the random variables

f(x1)
...

f(xn)

 ,

• The matrix

k(x1, x1) · · · k(x1, xn)
... . . . ...

k(xn, x1) · · · k(xn, xn)

 ∈ Rn×n represents the covariance of the MVG for the

random variables

f(x1)
...

f(xn)

 ,

Further, since k(·, ·) is a valid kernel for f(·), by the property of kernel functions, for any n, we havek(x1, x1) · · · k(x1, xn)
... . . . ...

k(xn, x1) · · · k(xn, xn)


is always a PSD matrix, as desired for it to be a valid covariance matrix.

Some popular choices of covariance functions k(·, ·) could be:

• Squared Exponential Kernel:

KSE(x, x
′) = exp

(
− 1

2σ2
∥x− x′∥22

)
, for any x, x′ ∈ Rd,

(Also known as RBF)
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• Linear Kernel:
KLin(x, x

′) = xTx′

• Polynomial Kernel:
KPol(x, x

′) =
(
xTx′ + 1

)d
• Sigmoid Kernel:

KSig(x, x
′) = tanh(αxTx′ + β), etc.

2.2 (Regression) Inference using Gaussian Processes:

Suppose we are given a dataset D = {(xi, yi)}ni=1 of n points, such that yi = f(xi) + εi, for i ∈ [n],

where f : Rd → R is some UNKNOWN function and εi
i.i.d∼ N (0, σ2) for known σ (i.e. zero-mean Gaussian

noise).
Further, suppose x̃1, . . . , x̃m ∈ Rd are given test points, where our goal is to infer (regression task)
f(x̃1), . . . , f(x̃m) using GP inference. Note: If we knew f(·), the problem is trivial.

The task here is to approximate f(·) using Gaussian Processes (GP).
We assume the prior mean f∗ as m(·) := 0, i.e., m(x) = 0 for ∀x ∈ Rd, and we can choose any suitable
kernel k(·, ·).

So initially:
f(·) ∼ GP(m(·); k(·, ·)) ⇔ f(x) ∼ N (0,K(x, x′))

Then, y1
...
yn

 =

f(x1) + ε1
...

f(xn) + εn

 ∼ N (0,Kε) ⋆

The by property 3f(x1)
...

f(xn)

 ∼ N (0,K) and

ε1
...
εn

 ∼ N
(
0, σ2In×n

)
where K =

k(x1, x1) · · · k(x1, xn)
... . . . ...

k(xn, x1) · · · k(xn, xn)

 ∈ Rn×n

say K = K(X,X) then Kε =
(
K + σ2In×n

)
.,

where Kε is the noise covariance matrix that represents the uncertainty in the observed data due to the noise
term ε

Exercise 2.1: Property 3

Show how Property 3 proves the above.

Hint: The function values f(xi) and the noise terms εi are assumed to be independent, the sum of these two
terms will follow a MVG whose mean is the sum of the means and covariance is the sum of the covariances.
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Further owing to the GP assumption, we know that: f(x̃1)
...

f(x̃m)

 ∼ N

0,

k(x̃1, x̃1) · · · k(x̃1, x̃m)
... . . . ...

k(x̃m, x̃1) · · · k(x̃m, x̃m)




Where the mean vector is a zero vector ∈ Rm and where the covariance matrix is ∈ Rm×m.
Then, combining the above with ⋆, we have the joint distribution:

f(x̃1)
...

f(x̃m)
y1
...
yn


∼ N





0
...
...
...
0


,



k(X̃, X̃) k(X̃, Y )
...

...
...

...
...

...
k(Y, X̃) K(X,X) + σ2In×n




Where 0 ∈ Rm+n, and the covariance matrix ∈ R(m+n)×(m+n) is block matrixed as:(

k(X̃, X̃) k(X̃, Y )

k(Y, X̃) K(X,X) + σ2In×n

)
where k(X̃, X̃) ∈ Rm×m, k(X̃, Y ) ∈ Rm×n, k(Y, X̃) ∈ Rn×m and K(X,X) + σ2In×n ∈ Rn×m

Then, by MVG conditioning (a.k.a. posterior) of

 f(x̃1)
...

f(x̃m)

 given the observed realization of

y1
...
yn


using Property 2 of MVG, we know:

P


 f(x̃1)

...
f(x̃m)

∣∣∣∣∣
y1

...
yn


 ∼ N (m̂, K̂); where

m̂ = µA +ΣABΣ
−1
BB(x̃B − µB) [from Prop 2]

= 0 +K(X̃, y)
(
K(X,X) + σ2In×n

)−1

y1
...
yn


and K̃ = ΣAA − ΣABΣ

−1
BBΣBA

=⇒ K̃ = K(X̃,X)−K(X̃, y)
(
K(X,X) + σ2In×n

)−1
K(Y, X̃)

where
K̃ ∈ Rm×m, K(X̃,X) ∈ Rm×m, K(X̃, y) ∈ Rm×n,

(
K(X,X) + σ2In×n

)−1 ∈ Rn×n

and K(Y, X̃) ∈ Rn×m
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Thus we can compute both m̃ and K̃, and then infer

 f(x̃1)
...

f(x̃m)

 .We just need to draw a sample from

N (m̃, K̃).
This is how we make regression inferences using GP (which is inherently the posterior distribution of MVG
random variables!).

2.3 Gaussian Process Visualization: Predictions and Confidence Intervals

In the below plots, we visualize the predictions made by a Gaussian Process (with RBF Kernel) regression
model, along with its associated uncertainty. The red points represent the training data, while the blue line
shows the predicted mean function. The shaded blue region represents the 95% confidence interval, which
indicates the uncertainty in the GP’s predictions. The wider the region, the higher the uncertainty, which is
particularly noticeable in areas with fewer data points.

Figure 1: This plot shows the Gaussian Process regression prediction mean and the 95% confidence interval,
with x = 9 being outside the training set. The wider confidence intervals at x = 9 indicate higher uncertainty
in predictions for points farther from known data points.
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Additionally, the point at x=9 is included to demonstrate how adding new data influences the GP’s confidence.
As we can see, the variance (confidence interval) near this new point is reduced, indicating that the GP has
become more confident about the prediction.

Figure 2: This plot shows the Gaussian Process regression prediction mean and the 95% confidence interval,
with the new point x = 9 included as part of the training data. The variance decreases around x = 8, as the
GP model has incorporated more data, providing tighter confidence bounds for predictions near known points
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Next Lecture

The next lecture will cover the following topics:

(i) Online (Sequential) Learning

(ii) Halving Algorithm (HA)

(iii Weighted Majority Algorithm (WMA)

References:

1. Gaussian Processes, Lecture Notes from CS229: Machine Learning, 2008 Fall [Link]

2. Lecture 24, Lecture Notes from ESE 680-004: Learning and Control, 2019 Fall [Link]

3. Gaussian Processes visual explanation [Link1] and a more mathematical explanation [Link2]

4. Reference for Proofs involving Gaussian properties [Link]
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