CS 412 — Introduction to Machine Learning (UIC) April 29, 2025

Lecture 28

Instructor: Aadirupa Saha Scribe(s): Harsh Kothari

Overview

In the last lecture, we covered the following main topics:
1. Gaussian Processes
This lecture focuses on:
1. Online Learning
2. Halving Algorithm
3. Weighted Majority Algorithm

1 Online Learning

1.1 Online Learning Framework

Motivation: Unlike batch learning, where all training data is available upfront, online learning handles data
sequentially. The model is updated in real-time as new data arrives.
Setting:

* The learner does not have access to the full dataset in advance.
* Learning proceeds over 1" rounds (or timesteps).

Online Learning Protocol:
Fort=1,2,....T:

1. Receive Input: Receive an instance

x; € X CRY
2. Predict: Predict a label
(TSN
using the current predictor
ft X - y

3. Receive Feedback: The true label y; € ) is revealed.
4. Incur Loss: Compute the loss using a suitable loss function /:
(e, t)
5. Update Predictor: Update the model based on the feedback:
ft+1 « Update( ft, X¢, yt)
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2 Halving Algorithm

2.1 Problem Setup: Halving Algorithm
Task: Classification
We are in a binary classification setting where the goal is to learn a mapping:
X —{0,1}
Ateachroundt=1,2,...,T":
* The learner receives an input x; € X
e The learner predicts a label g € {0,1}
* The true label y; € {0, 1} is revealed

Hypothesis Class
The learner has access to a finite hypothesis class:
H ={h1,he,...,hn}
where each hypothesis h; € H is a function:
hi: X —{0,1}

That is, each hypothesis maps any input instance to a binary label.

Objective

The goal is to minimize the cumulative prediction error over 7' rounds:

T
min Z E(yt, :I)t)
t=1

where:
* 1 is the true label
* 1, is the learner’s prediction

o (y¢, U¢) is the O-1 loss:
0 ify =
U ify £

C(Ye, Jt) = {

Realizability Assumption

We assume the hypothesis class H is realizable, i.e.,

Jh* € Hsuchthat Ve € {1,..., T}, h*(x¢) =y

This means there exists a perfect hypothesis in H that makes zero mistakes over the entire sequence.
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2.2 Halving Algorithm
Initialization

Start with the full hypothesis class:

=
I
RS

For eachround ¢t =1,2,...,7T":
1. Receive input: x; € X
2. Predict label:
1 if Y Th(xy) = 1] > e
Qt = heHy
0 otherwise

(Majority vote over hypotheses)
3. Receive true label: y; € {0,1}

4. Update version space:
Ht+1 — {h € Ht | h(Xt) = yt}

Mistake Bound

At each mistake, at least half of the hypotheses are eliminated. Therefore, the total number of mistakes is at
most:

logy ‘H’

Assumptions

* The hypothesis class H is finite: |H| = N

* Realizability holds: there exists h* € H such that for all ¢,
h*(x¢) = ye
* At each mistake, the algorithm eliminates all hypotheses that disagree with the true label.

Key Observation

When a mistake is made at time ¢, the algorithm predicts the majority label, so strictly more than half of the
hypotheses in H; were wrong. Therefore, the size of the hypothesis set is at most halved:

1
|Hiq| < §\Ht|
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Derivation

Let M be the total number of mistakes. Then after M mistakes:

N
[Hy1] < B

But by the realizability assumption, the correct hypothesis h* is never eliminated, so:
|Hpr1] > 1

Combining the inequalities:

N

o>l = M <N = M<log, N

Conclusion

The total number of mistakes made by the Halving Algorithm is at most:

M <log,|H]|

3 Weighted Majority Algorithm

Setting

We consider the same online binary classification setting as the Halving Algorithm:

X —{0,1}

Ateachroundt = 1,2,...,T, the learner receives an input x; € X and must predict a label ¢; € {0,1}.
The learner has access to a finite hypothesis class:

H:{hl,hg,...,h]\/}, hl.)(—>{0,1}

Note: The realizability assumption does not hold here. There may be no perfect hypothesis in H.

Initialization
* Assign initial weights: wy(i) =1 Vie {1,...,N}

¢ Choose a learning rate ¢ € [0, 1]

For eachround ¢t =1,2,...,7T":

1. Receive input: x; € X

2. Compute normalized weights:



3. Make prediction (Weighted Majority):

N
7 = round (Z pe(i) - hi(xt)>

=1

where
1 ifz>05

0 ifz<0.5

round(z) = {
4. Receive true label: y; € {0,1}
5. Update weights: For eachi € {1,..., N},

N Jw@) - (L —e) i hi(xe) # ye
w1 (i) =

wy(7) otherwise

4 Mistake Bound of the Weighted Majority Algorithm

Theorem 2.6

For all experts i € {1, ..., N}, the number of mistakes made by the Weighted Majority Algorithm (WMA)
up to round 7" is bounded by:

2log N
Mr(WMA) < 2228

+ 2(1 + €) Mr(expert 7)

where:
* M7p(WMA): total mistakes made by the algorithm
* My (experti): total mistakes made by expert ¢
* N: number of experts

* ¢ € [0,1]: learning rate

Definitions and Setup

Let:
N

‘bt = Z wt(z)

i=1
be the total weight of all experts at time ¢, where w;(7) is the weight of expert 1.

Initial total weight:
b =N

Weight of expert 7 at time 7'

wr(i) = (1 — e)MrEPertd) — &1 > (i)
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Key Lemma (Lemma 2.7)

If the algorithm makes a mistake at time ¢, then:
Dy <Py (1 — g)

Proof: Let S =), Ewrong wy () be the total weight of experts who predicted incorrectly at round ¢. Since the

algorithm made a mistake, the majority (by weight) must have been wrong:
1
S> -0
5 Pt

Then the updated total weight is:
D= 3 wii) + Y wii)(1 - )= B —eS
correct wrong
Thus:
B < B —c B =D (1-3)
t+1 t 2 t — *t D)

Bounding the Total Weight

If the algorithm makes M7 (WMA) mistakes, repeatedly applying Lemma 2.7:

Mz (WMA)
bred(i-)

2

(1 s) Mr(WMA)

From earlier, we also have: '
Oy > U)T(Z) — (1 o E)MT(expertz)
Combining the Bounds

. Mr(WMA
(1 - g)MT(expertz) <N (1 - g) 7 )

Take negative logarithms on both sides:

1 1
My (expert i) - log <15> > log N + M7(WMA) - log (1

)

[Nel10]

Using Approximations

Using the bounds:

1
log<1 >§5+52

lo ! >
gli7—=)2

Mr(expert i) (e + £2) > log N + gMT(WMA)

)

[N
| ™

Substitute into the inequality:

Rearrange to solve for M7(WMA):
2log N
€

Mp(WMA) < + 2(1 + &) My (expert 7)
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Conclusion

The total number of mistakes made by the Weighted Majority Algorithm is bounded by:

2log N

Mp(WMA) < + 2(1 + ¢) Mr(expert i)

Next Lecture

The next lecture will cover the following topics:
(i) Exponential Weighted Algorithm
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