
CS 412 — Introduction to Machine Learning (UIC) April 29, 2025

Lecture 28
Instructor: Aadirupa Saha Scribe(s): Harsh Kothari

Overview

In the last lecture, we covered the following main topics:

1. Gaussian Processes

This lecture focuses on:

1. Online Learning

2. Halving Algorithm

3. Weighted Majority Algorithm

1 Online Learning

1.1 Online Learning Framework

Motivation: Unlike batch learning, where all training data is available upfront, online learning handles data
sequentially. The model is updated in real-time as new data arrives.
Setting:

• The learner does not have access to the full dataset in advance.

• Learning proceeds over T rounds (or timesteps).

Online Learning Protocol:
For t = 1, 2, . . . , T :

1. Receive Input: Receive an instance
xt ∈ X ⊆ Rd

2. Predict: Predict a label
ŷt ∈ Y

using the current predictor
ft : X → Y

3. Receive Feedback: The true label yt ∈ Y is revealed.

4. Incur Loss: Compute the loss using a suitable loss function ℓ:

ℓ(yt, ŷt)

5. Update Predictor: Update the model based on the feedback:

ft+1 ← Update(ft,xt, yt)
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2 Halving Algorithm

2.1 Problem Setup: Halving Algorithm

Task: Classification

We are in a binary classification setting where the goal is to learn a mapping:

X → {0, 1}

At each round t = 1, 2, . . . , T :

• The learner receives an input xt ∈ X

• The learner predicts a label ŷt ∈ {0, 1}

• The true label yt ∈ {0, 1} is revealed

Hypothesis Class

The learner has access to a finite hypothesis class:

H = {h1, h2, . . . , hN}

where each hypothesis hi ∈ H is a function:

hi : X → {0, 1}

That is, each hypothesis maps any input instance to a binary label.

Objective

The goal is to minimize the cumulative prediction error over T rounds:

min
T∑
t=1

ℓ(yt, ŷt)

where:

• yt is the true label

• ŷt is the learner’s prediction

• ℓ(yt, ŷt) is the 0-1 loss:

ℓ(yt, ŷt) =

{
0 if yt = ŷt

1 if yt ̸= ŷt

Realizability Assumption

We assume the hypothesis classH is realizable, i.e.,

∃h∗ ∈ H such that ∀t ∈ {1, . . . , T}, h∗(xt) = yt

This means there exists a perfect hypothesis inH that makes zero mistakes over the entire sequence.
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2.2 Halving Algorithm

Initialization

Start with the full hypothesis class:
H1 = H

For each round t = 1, 2, . . . , T :

1. Receive input: xt ∈ X

2. Predict label:

ŷt =

1 if
∑

h∈Ht

I[h(xt) = 1] ≥ |Ht|
2

0 otherwise

(Majority vote over hypotheses)

3. Receive true label: yt ∈ {0, 1}

4. Update version space:
Ht+1 ← {h ∈ Ht | h(xt) = yt}

Mistake Bound

At each mistake, at least half of the hypotheses are eliminated. Therefore, the total number of mistakes is at
most:

log2 |H|

Assumptions

• The hypothesis classH is finite: |H| = N

• Realizability holds: there exists h∗ ∈ H such that for all t,

h∗(xt) = yt

• At each mistake, the algorithm eliminates all hypotheses that disagree with the true label.

Key Observation

When a mistake is made at time t, the algorithm predicts the majority label, so strictly more than half of the
hypotheses in Ht were wrong. Therefore, the size of the hypothesis set is at most halved:

|Ht+1| ≤
1

2
|Ht|
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Derivation

Let M be the total number of mistakes. Then after M mistakes:

|HM+1| ≤
N

2M

But by the realizability assumption, the correct hypothesis h∗ is never eliminated, so:

|HM+1| ≥ 1

Combining the inequalities:

N

2M
≥ 1 ⇒ 2M ≤ N ⇒ M ≤ log2N

Conclusion

The total number of mistakes made by the Halving Algorithm is at most:

M ≤ log2 |H|

3 Weighted Majority Algorithm

Setting

We consider the same online binary classification setting as the Halving Algorithm:

X → {0, 1}

At each round t = 1, 2, . . . , T , the learner receives an input xt ∈ X and must predict a label ŷt ∈ {0, 1}.
The learner has access to a finite hypothesis class:

H = {h1, h2, . . . , hN}, hi : X → {0, 1}

Note: The realizability assumption does not hold here. There may be no perfect hypothesis inH.

Initialization

• Assign initial weights: w1(i) = 1 ∀i ∈ {1, . . . , N}

• Choose a learning rate ε ∈ [0, 1]

For each round t = 1, 2, . . . , T :

1. Receive input: xt ∈ X

2. Compute normalized weights:

pt(i) =
wt(i)∑N
j=1wt(j)
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3. Make prediction (Weighted Majority):

ŷt = round

(
N∑
i=1

pt(i) · hi(xt)

)

where

round(x) =

{
1 if x ≥ 0.5

0 if x < 0.5

4. Receive true label: yt ∈ {0, 1}

5. Update weights: For each i ∈ {1, . . . , N},

wt+1(i) =

{
wt(i) · (1− ε) if hi(xt) ̸= yt

wt(i) otherwise

4 Mistake Bound of the Weighted Majority Algorithm

Theorem 2.6

For all experts i ∈ {1, . . . , N}, the number of mistakes made by the Weighted Majority Algorithm (WMA)
up to round T is bounded by:

MT (WMA) ≤ 2 logN

ε
+ 2(1 + ε)MT (expert i)

where:

• MT (WMA): total mistakes made by the algorithm

• MT (expert i): total mistakes made by expert i

• N : number of experts

• ε ∈ [0, 1]: learning rate

Definitions and Setup

Let:

Φt =

N∑
i=1

wt(i)

be the total weight of all experts at time t, where wt(i) is the weight of expert i.
Initial total weight:

Φ1 = N

Weight of expert i at time T :

wT (i) = (1− ε)MT (expert i) ⇒ ΦT ≥ wT (i)
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Key Lemma (Lemma 2.7)

If the algorithm makes a mistake at time t, then:

Φt+1 ≤ Φt

(
1− ε

2

)
Proof: Let S =

∑
i∈wrong wt(i) be the total weight of experts who predicted incorrectly at round t. Since the

algorithm made a mistake, the majority (by weight) must have been wrong:

S >
1

2
Φt

Then the updated total weight is:

Φt+1 =
∑

correct
wt(i) +

∑
wrong

wt(i)(1− ε) = Φt − εS

Thus:
Φt+1 < Φt − ε · 1

2
Φt = Φt

(
1− ε

2

)
Bounding the Total Weight

If the algorithm makes MT (WMA) mistakes, repeatedly applying Lemma 2.7:

ΦT ≤ Φ1

(
1− ε

2

)MT (WMA)
= N

(
1− ε

2

)MT (WMA)

From earlier, we also have:
ΦT ≥ wT (i) = (1− ε)MT (expert i)

Combining the Bounds

(1− ε)MT (expert i) ≤ N
(
1− ε

2

)MT (WMA)

Take negative logarithms on both sides:

MT (expert i) · log
(

1

1− ε

)
≥ logN +MT (WMA) · log

(
1

1− ε
2

)

Using Approximations

Using the bounds:

log

(
1

1− ε

)
≤ ε+ ε2

log

(
1

1− ε
2

)
≥ ε

2

Substitute into the inequality:

MT (expert i)(ε+ ε2) ≥ logN +
ε

2
MT (WMA)

Rearrange to solve for MT (WMA):

MT (WMA) ≤ 2 logN

ε
+ 2(1 + ε)MT (expert i)
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Conclusion

The total number of mistakes made by the Weighted Majority Algorithm is bounded by:

MT (WMA) ≤ 2 logN

ε
+ 2(1 + ε)MT (expert i)

Next Lecture

The next lecture will cover the following topics:
(i) Exponential Weighted Algorithm
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