CS 412 — Introduction to Machine Learning (UIC) May 10, 2025

Lecture 29
Instructor: Aadirupa Saha Scribe(s): Datta Sai VVN

Overview
In the last lecture, we covered:
1. Halving Algorithm (HA)
2. Weighted Majority Algorithm (WMA)

In this lecture, we focus on:

1. Exponential Weights Algorithm (EXP-Wt)
FTRL with entropy regularizer; proof of Rp = O(VT In N)

2. Online Mirror Descent / Online Convex Optimization (OMD/OCO)
Generalization of EXP-Wt via mirror maps; regret bound

1 Exponential Weights Algorithm

1.1 Expert-Advice Full-Information Setting

We begin with a pool of N experts (or hypotheses) {h1,...,hn}. Ateach round ¢, the learner:
* Queries each expert’s prediction h;(x;).
* Suffers *all* expert losses ¢; ; = E(h,;(:vt), yt) once the true label y; is revealed.

Because we see the *entire* vector ({1 4,...,¢n ) each round, this is known as the **full-information**
setting.

Why WMA only for classification. The Weighted Majority Algorithm maintains integer mistake counts and
uses *zero—one* loss, so it applies only when ¢ € {0, 1} (classification).

Why EXP-Wt handles any loss. By exponentiating arbitrary bounded losses ¢; ; € [0, 1], the Exponential
Weights method adapts to any convex (or even general) loss function. Thus EXP-Wt is suitable for
classification, regression, ranking, etc.

1.2 Online Learning Framework

Unlike batch learning, online learning proceeds sequentially: at each round the learner sees only the current
instance and must immediately predict.

* The learner does not have access to the full dataset in advance.

* Learning proceeds over I" rounds.
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Protocol fort =1,...,T
1. Receive input: z; € X.
2. Predict: §; € ) using current predictor f;.
3. Receive feedback: true label ¥, is revealed.
4. Incur loss: ¢(yz, Ut).
5. Update predictor: f;1 < Update(f, x¢,yt).

1.3 Problem Setup and Regret

We have N experts whose predictions at round ¢ incur losses
iy = g(hi(wt%yt), t1=1,...,N.

Our learner maintains weights w; ; > 0 and defines the mixture distribution

N
peli) = = ) = > pili) .
Zj:l Wyt i=1
We define the regret after T' rounds as
T T
Rr = py) — min > iy
t=1 t=1

An algorithm has sublinear regret if Ry = o(T), i.e. limp_,oo Ry /T = 0. Our goal is to show that EXP-Wt
achieves Ry = O(vT'In N), which implies sublinear regret.

Regret Definition

Remark A deterministic expert-selection algorithm can be forced into linear regret. For example, with
two experts (Alice and Bob), an adversary who assigns loss 1 to whichever expert is chosen (and 0 to the
other) each round causes the learner’s total loss to be 7', while the better expert suffers at most 7'/2. Hence
Ry >T —T/2 = Q(T), showing that randomized play is essential for achieving sublinear regret.

1.4 Examples of Online Learning
Binary classification: Rain-or-not prediction; F/FA fraud detection; stock-buy/hold decisions; loan approval.
Multiclass classification: Which stock will be highest tomorrow; tournament outcome prediction.

Regression: Predict tomorrow’s temperature; house-price estimation; revenue forecasting.
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Concrete Example: Stock-Price Prediction

Consider an online regression task for predicting tomorrow’s stock price.

* Instance: z; = (price,_;, volume;_i, ...) € RY, e.g. closing price and trading volume from the
prior day.

* Label: y; = price, € R, the actual closing price on day ¢.

* Loss: £(g¢,y:) = (9 — y)* (squared-error) or |§; — | (absolute error).

Each expert h; might be a simple autoregressive model (e.g. h;(z;) = wiT x) or any other predictor; EXP-Wt
will maintain weights over these NV experts and mix their predictions to minimize cumulative squared (or
absolute) error in this full-information setting.

1.5 Exponential Weights Algorithm Description

The Exponential Weights algorithm maintains a distribution p; over experts that is updated multiplicatively
according to observed losses. Concretely, at each round:

1. Form distribution:
t—1
pi(i) o wig=exp(-nLiz-1), Lig-1= lis
s=1

2. Predict: Use the mixture prediction g; = Y, p¢(7) hq(z¢).
3. Observe losses: Receive ¢;; = £(h;(x¢), ;) for all 4.

4. Update weights:
i1 = Wiz exp(—nlit).

This ensures that experts incurring high loss are exponentially down-weighted.

1.6 Pseudocode

Input: Number of experts N, learning rate > 0
Initialize w; ; < 1 forall i € [N]
fort =1to T do
Receive x;
Form py (i) = wis/ >, wi
Predict according to p;
Observe ¢; ; for all ¢
Update w; 141 < w; ¢ exp(—n¥4;¢)
end for

P RIRPDRRPE
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1.7 Regret Bound (Proof of Theorem)

[ Theorem 1.1: Regret of EXP-Wt
If we set
8In N
TI - T I
then Algorithm 1.6 achieves
T

Proof. Let W; = Zfil wj¢. Since w; 1 = 1, Wi = N. Fix the best expert * = arg min; Zthl i ¢. Then

T
Wi 741 :eXp(—nZ@*,t) < Wria,
=1

SO

1WT+1 wa—mN (1)

Hoeffding’s Lemma. For any random variable X € [a, b] and any s € R,
mﬂxﬂm]<“442i>

In our setting, ¢; ; € [0, 1]. Applying this with s = —» under the distribution p; gives:

N
=1

Rearranging yields

Zpt e 7757,75 < exp( UE(Ptayt)"’_%)

Hence for each round

N
Wi
W, = 2o pe < ex(ontlpeu) + ). 2)
Summing (2) overt = 1,...,T gives
W, T2
In TH < —nzfpt,yt 77

Combining (1) and (2) and rearranging yields

InN T
Ry < 422 21
i 8
Choosing n = /81n N/T balances the two terms and completes the proof. O
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Exercise 1.1: Toy Example: N

Suppose two experts incur alternating losses ¢1; = 0,1,0,1,..., o = 1,0,1,0,.... Initialize
w1 = wo,1 = 1. Withn = /8In2/T, track w;; and verify the regret bound numerically for small
T.

2 Online Mirror Descent / OCO

2.1 Setup and Notation

Let K C R be a closed convex set. We choose a differentiable regularizer R : IC — R that is -strongly
convex with respect to a norm || - ||, i.e.

R(u) > R(v) + (VR(v), u—v) + gHu —v||?, Yu,veKk.

Define:

* 1€l = supjj,<1 (¢, w) the dual norm.

* The convex conjugate (Legendre—Fenchel transform)

R'(0) = sup{{0,w) — R(w)}.

* The Bregman divergence
Dr(ullv) = R(u) = R(v) = (VR(v), u —v).
2.2 Algorithm Description

At each round ¢, given the current point w; € K and subgradient g; € 9/¢;(w;), OMD updates as follows:

1. Dual step:
Ut+1 = VR*(VR(wt) - T]gt)

2. Primal projection:
wyy1 = argmin D (w||ugs1)-
welkl

2.3 Pseudocode

: Input: Convex set X, 5-strongly convex R, step size n > 0
. Initialize w; + arg min,ex R(w)
:fort=1to7 do

Receive convex loss ¢; and pick w;

Compute subgradient g; € 0¢;(wy)

Dual step: w41 < VR*(VR(wi) — 1 gt)

Primal projection: w1 <— arg mingex Dr(w||uit1)
end for

PR RRE
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2.4 Regret Bound

[ Theorem 2.1: Regret of OMD

and define the initial Bregman diameter
D = max D .
aX R (wlw:)

Then OMD with constant step-size > 0 ensures

D nG*T
RT = th(wt) - mmZEt(u) S = i
prt — n 2
In particular, choosing = é@? gives

Rr < G/33L =0(GVDT).

Assume each loss ¢; is convex and all subgradients satisfy ||g¢||. < G. Let R be (-strongly convex on £,

2.5 Recovering EXP-Wt

When I = Ay and

N
R(p) = pilnp; (soB=1),
i=1

OMD coincides with the Exponential Weights algorithm of Section 1.6, and Theorem 2.1 recovers the same

O(VTIn N) bound.

Next Lecture

The next lecture will cover:

1. EXP-Wt under stochastic vs. adversarial feedback
2. Bandit extensions and partial-information regret

3. Tuning and adaptive learning rates
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