
CS 412 — Introduction to Machine Learning (UIC) May 10, 2025

Lecture 29
Instructor: Aadirupa Saha Scribe(s): Datta Sai VVN

Overview

In the last lecture, we covered:

1. Halving Algorithm (HA)

2. Weighted Majority Algorithm (WMA)

In this lecture, we focus on:

1. Exponential Weights Algorithm (EXP–Wt)
FTRL with entropy regularizer; proof of RT = O(

√
T lnN)

2. Online Mirror Descent / Online Convex Optimization (OMD/OCO)
Generalization of EXP–Wt via mirror maps; regret bound

1 Exponential Weights Algorithm

1.1 Expert-Advice Full-Information Setting

We begin with a pool of N experts (or hypotheses) {h1, . . . , hN}. At each round t, the learner:

• Queries each expert’s prediction hi(xt).

• Suffers *all* expert losses ℓi,t = ℓ
(
hi(xt), yt

)
once the true label yt is revealed.

Because we see the *entire* vector (ℓ1,t, . . . , ℓN,t) each round, this is known as the **full-information**
setting.

Why WMA only for classification. The Weighted Majority Algorithm maintains integer mistake counts and
uses *zero–one* loss, so it applies only when ℓ ∈ {0, 1} (classification).

Why EXP–Wt handles any loss. By exponentiating arbitrary bounded losses ℓi,t ∈ [0, 1], the Exponential
Weights method adapts to any convex (or even general) loss function. Thus EXP–Wt is suitable for
classification, regression, ranking, etc.

1.2 Online Learning Framework

Unlike batch learning, online learning proceeds sequentially: at each round the learner sees only the current
instance and must immediately predict.

• The learner does not have access to the full dataset in advance.

• Learning proceeds over T rounds.

29-1

Protocol for t = 1, . . . , T

1. Receive input: xt ∈ X .

2. Predict: ŷt ∈ Y using current predictor ft.

3. Receive feedback: true label yt is revealed.

4. Incur loss: ℓ(yt, ŷt).

5. Update predictor: ft+1 ← Update(ft, xt, yt).

1.3 Problem Setup and Regret

We have N experts whose predictions at round t incur losses

ℓi,t = ℓ
(
hi(xt), yt

)
, i = 1, . . . , N.

Our learner maintains weights wi,t > 0 and defines the mixture distribution

pt(i) =
wi,t∑N
j=1wj,t

, ℓ(pt, yt) =
N∑
i=1

pt(i) ℓi,t.

We define the regret after T rounds as

RT =
T∑
t=1

ℓ(pt, yt)− min
i∈[N]

T∑
t=1

ℓi,t.

An algorithm has sublinear regret if RT = o(T), i.e. limT→∞RT /T = 0. Our goal is to show that EXP–Wt
achieves RT = O(

√
T lnN), which implies sublinear regret.

Regret Definition

RT =
T∑
t=1

ℓ(pt, yt) − min
i∈[N]

T∑
t=1

ℓi,t.

Remark A deterministic expert-selection algorithm can be forced into linear regret. For example, with
two experts (Alice and Bob), an adversary who assigns loss 1 to whichever expert is chosen (and 0 to the
other) each round causes the learner’s total loss to be T , while the better expert suffers at most T/2. Hence
RT ≥ T − T/2 = Ω(T), showing that randomized play is essential for achieving sublinear regret.

1.4 Examples of Online Learning

Binary classification: Rain-or-not prediction; F/FA fraud detection; stock-buy/hold decisions; loan approval.

Multiclass classification: Which stock will be highest tomorrow; tournament outcome prediction.

Regression: Predict tomorrow’s temperature; house-price estimation; revenue forecasting.

29-2

Concrete Example: Stock-Price Prediction

Consider an online regression task for predicting tomorrow’s stock price.

• Instance: xt = (pricet−1, volumet−1, . . .) ∈ Rd, e.g. closing price and trading volume from the
prior day.

• Label: yt = pricet ∈ R, the actual closing price on day t.

• Loss: ℓ
(
ŷt, yt

)
= (ŷt − yt)

2 (squared-error) or |ŷt − yt| (absolute error).

Each expert hi might be a simple autoregressive model (e.g. hi(xt) = w⊤
i xt) or any other predictor; EXP–Wt

will maintain weights over these N experts and mix their predictions to minimize cumulative squared (or
absolute) error in this full-information setting.

1.5 Exponential Weights Algorithm Description

The Exponential Weights algorithm maintains a distribution pt over experts that is updated multiplicatively
according to observed losses. Concretely, at each round:

1. Form distribution:

pt(i) ∝ wi,t = exp
(
−η Li,t−1

)
, Li,t−1 =

t−1∑
s=1

ℓi,s.

2. Predict: Use the mixture prediction ŷt =
∑

i pt(i)hi(xt).

3. Observe losses: Receive ℓi,t = ℓ
(
hi(xt), yt

)
for all i.

4. Update weights:
wi,t+1 = wi,t exp

(
−η ℓi,t

)
.

This ensures that experts incurring high loss are exponentially down-weighted.

1.6 Pseudocode

Algorithm 1.1: Exponential Weights (EXP–Wt)

1: Input: Number of experts N , learning rate η > 0
2: Initialize wi,1 ← 1 for all i ∈ [N]
3: for t = 1 to T do
4: Receive xt
5: Form pt(i)← wi,t/

∑
j wj,t

6: Predict according to pt
7: Observe ℓi,t for all i
8: Update wi,t+1 ← wi,t exp(−η ℓi,t)
9: end for

29-3

1.7 Regret Bound (Proof of Theorem)

Theorem 1.1: Regret of EXP–Wt

If we set

η =

√
8 lnN

T
,

then Algorithm 1.6 achieves

RT ≤
√

T

2
lnN .

Proof. Let Wt =
∑N

i=1wi,t. Since wi,1 = 1, W1 = N . Fix the best expert i∗ = argmini
∑T

t=1 ℓi,t. Then

wi∗,T+1 = exp
(
−η

T∑
t=1

ℓi∗,t

)
≤ WT+1,

so

ln
WT+1

W1
≥ −η

T∑
t=1

ℓi∗,t − lnN. (1)

Hoeffding’s Lemma. For any random variable X ∈ [a, b] and any s ∈ R,

E
[
es(X−E[X])

]
≤ exp

(
s2(b−a)2

8

)
.

In our setting, ℓi,t ∈ [0, 1]. Applying this with s = −η under the distribution pt gives:
N∑
i=1

pt(i) e
−η(ℓi,t−ℓ(pt,yt)) ≤ exp

(
η2

8

)
.

Rearranging yields
N∑
i=1

pt(i) e
−ηℓi,t ≤ exp

(
−η ℓ(pt, yt) + η2

8

)
.

Hence for each round
Wt+1

Wt
=

N∑
i=1

pt(i) e
−ηℓi,t ≤ exp

(
−η ℓ(pt, yt) + η2

8

)
. (2)

Summing (2) over t = 1, . . . , T gives

ln
WT+1

W1
≤ −η

T∑
t=1

ℓ(pt, yt) +
T η2

8
.

Combining (1) and (2) and rearranging yields

RT ≤
lnN

η
+

Tη

8
.

Choosing η =
√
8 lnN/T balances the two terms and completes the proof.

29-4

Exercise 1.1: Toy Example: N

Suppose two experts incur alternating losses ℓ1,t = 0, 1, 0, 1, . . . , ℓ2,t = 1, 0, 1, 0, Initialize
w1,1 = w2,1 = 1. With η =

√
8 ln 2/T , track wi,t and verify the regret bound numerically for small

T .

2 Online Mirror Descent / OCO

2.1 Setup and Notation

Let K ⊂ Rd be a closed convex set. We choose a differentiable regularizer R : K → R that is β-strongly
convex with respect to a norm ∥ · ∥, i.e.

R(u) ≥ R(v) +
〈
∇R(v), u− v

〉
+ β

2 ∥u− v∥2, ∀u, v ∈ K.

Define:

• ∥θ∥∗ = sup∥w∥≤1⟨θ, w⟩ the dual norm.

• The convex conjugate (Legendre–Fenchel transform)

R∗(θ) = sup
w∈K
{⟨θ, w⟩ −R(w)}.

• The Bregman divergence

DR(u∥v) = R(u)−R(v)− ⟨∇R(v), u− v⟩.

2.2 Algorithm Description

At each round t, given the current point wt ∈ K and subgradient gt ∈ ∂ℓt(wt), OMD updates as follows:

1. Dual step:
ut+1 = ∇R∗(∇R(wt)− η gt

)
.

2. Primal projection:
wt+1 = argmin

w∈K
DR

(
w∥ut+1

)
.

2.3 Pseudocode

Algorithm 2.1: Online Mirror Descent (OMD)

1: Input: Convex set K, β-strongly convex R, step size η > 0
2: Initialize w1 ← argminw∈K R(w)
3: for t = 1 to T do
4: Receive convex loss ℓt and pick wt

5: Compute subgradient gt ∈ ∂ℓt(wt)
6: Dual step: ut+1 ← ∇R∗(∇R(wt)− η gt)
7: Primal projection: wt+1 ← argminw∈K DR(w∥ut+1)
8: end for

29-5

2.4 Regret Bound

Theorem 2.1: Regret of OMD

Assume each loss ℓt is convex and all subgradients satisfy ∥gt∥∗ ≤ G. Let R be β-strongly convex on K,
and define the initial Bregman diameter

D = max
w∈K

DR(w∥w1).

Then OMD with constant step-size η > 0 ensures

RT =

T∑
t=1

ℓt(wt)−min
u∈K

T∑
t=1

ℓt(u) ≤
D

η
+

η G2 T

2β
.

In particular, choosing η =
√

2β D
G2 T

gives

RT ≤ G
√

2DT
β = O

(
G
√
DT

)
.

2.5 Recovering EXP–Wt

When K = ∆N and

R(p) =
N∑
i=1

pi ln pi (so β = 1),

OMD coincides with the Exponential Weights algorithm of Section 1.6, and Theorem 2.1 recovers the same
O(
√
T lnN) bound.

Next Lecture

The next lecture will cover:

1. EXP–Wt under stochastic vs. adversarial feedback

2. Bandit extensions and partial-information regret

3. Tuning and adaptive learning rates

References

1. Cesa-Bianchi, N. and G. Lugosi. Prediction, Learning, and Games. Cambridge Univ. Press, 2006.

2. Shalev-Shwartz, S. “Online Learning and Online Convex Optimization.” Foundations and Trends in
Machine Learning, 2012.

3. Rakhlin, S. “Mindreader demo,” UCSD, 2008. http://seed.ucsd.edu/mindreader/

4. Piazza handout: “Proof of Theorem 2.1 (EXP–Wt),” May 2025. "https://piazza.com/class/
m5vnz1h225x1c0/post/10"

29-6

http://seed.ucsd.edu/mindreader/
"https://piazza.com/class/m5vnz1h225x1c0/post/10"
"https://piazza.com/class/m5vnz1h225x1c0/post/10"

	Exponential Weights Algorithm
	Expert‐Advice Full‐Information Setting
	Online Learning Framework
	Problem Setup and Regret
	Examples of Online Learning
	Exponential Weights Algorithm Description
	Pseudocode
	Regret Bound (Proof of Theorem)

	Online Mirror Descent / OCO
	Setup and Notation
	Algorithm Description
	Pseudocode
	Regret Bound
	Recovering EXP–Wt

