
CS 412 — Introduction to Machine Learning (UIC) February 04, 2025

Lecture 4
Lecturer: Aadirupa Saha Scribe(s): Sujay Dahagam

Overview

Previous Lecture (Lecture 3) Topics:

1. Revisiting Linear Regression (for d = 1): The basic linear model y = wx+b and its use in regression.

2. Overfitting & Regularization: Discussion of overfitting in complex models and the introduction of
regularization (e.g., L2 regularization).

3. Basic Probability and Cost Functions: Overview of cost functions (such as Mean Squared Error)
used in regression.

This Lecture Focuses on:

1. The formulation and intuition behind Logistic Regression.

2. Transforming linear outputs to probabilities using the Sigmoid Function.

3. Defining the Decision Boundary.

4. Deriving the Cross-Entropy (Log Loss) Cost Function from maximum likelihood (ESL 4.4.1, PML
10.2.1–10.2.2).

5. Gradient Descent.

6. Incorporating Regularization.

7. Extending to Multi-class Classification using the Softmax function and the argmax decision rule.

1 Introduction

Logistic Regression is a supervised learning algorithm used for classification. Unlike linear regression—which
outputs continuous values—logistic regression estimates the probability that an input x belongs to a particular
class (usually labeled 0 or 1). The probability is then thresholded to obtain a discrete classification.
Example: In an email spam detection system, features (such as word frequency and email length) are used to
compute the probability that an email is spam (class 1) or not spam (class 0).
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2 Linear Model and Hypothesis

The model begins by computing a linear combination of the input features:

z = wTx+ b,

where:

• x ∈ Rn is the feature vector,

• w ∈ Rn is the weight vector,

• b ∈ R is the bias term.

This linear model is the foundation for the logistic hypothesis.

3 The Sigmoid Function

To transform the linear output z into a probability, we apply the sigmoid function.

3.1 Definition

σ(z) =
1

1 + e−z
.

Thus, the logistic regression hypothesis is:

hθ(x) = σ(wTx+ b) =
1

1 + e−(wT x+b)
.

3.2 Properties and Derivative

• As z → +∞, σ(z) → 1; as z → −∞, σ(z) → 0.

• σ(0) = 0.5 which defines the natural threshold.

• The derivative is:
σ′(z) = σ(z)

(
1− σ(z)

)
.

• Example: For z = 2:
σ(2) ≈ 1

1 + e−2
≈ 0.88.
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3.3 standard sigmoid plot
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4 Decision Boundary

After computing hθ(x), the output probability is converted to a class label by thresholding.

4.1 Classification Rule

ŷ =

{
1, if hθ(x) ≥ 0.5,

0, if hθ(x) < 0.5.

Since σ(0) = 0.5, the decision boundary is:

wTx+ b = 0.

4.2 Example

If wTx+ b = 0.8, then:
σ(0.8) ≈ 0.69 (classified as 1).

If wTx+ b = −1.2, then:
σ(−1.2) ≈ 0.23 (classified as 0).

5 Cost Function: Cross-Entropy Loss

The model is trained by minimizing the cross-entropy loss, derived from the maximum likelihood principle
(see ESL 4.4.1 and PML 10.2.1–10.2.2).

5.1 Loss for a Single Example

For an example (x(i), y(i)) with y(i) ∈ {0, 1} and ŷ(i) = hθ(x
(i)):

cost
(
hθ(x

(i)), y(i)
)
= −

[
y(i) log ŷ(i) + (1− y(i)) log

(
1− ŷ(i)

)]
.
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5.2 Overall Cost Function

Averaging over m examples:

J(θ) = − 1

m

m∑
i=1

[
y(i) log

(
hθ(x

(i))
)
+ (1− y(i)) log

(
1− hθ(x

(i))
)]

.

5.3 Examples

• If y = 1 and hθ(x) = 0.9, then cost ≈ − log(0.9) ≈ 0.105.

• If y = 1 but hθ(x) = 0.2, cost ≈ − log(0.2) ≈ 1.609.

• If y = 0 and hθ(x) = 0.1, cost ≈ − log(0.9) ≈ 0.105.

• If y = 0 but hθ(x) = 0.8, cost ≈ − log(0.2) ≈ 1.609.

6 Gradient Descent

The cost function J(θ) is minimized using gradient descent.

6.1 Gradient Computation

For each weight wj :
∂J(θ)

∂wj
=

1

m

m∑
i=1

[
σ(wTx(i) + b)− y(i)

]
x
(i)
j .

For the bias b:
∂J(θ)

∂b
=

1

m

m∑
i=1

[
σ(wTx(i) + b)− y(i)

]
.

7 Regularization

To prevent overfitting, a regularization term is added.

7.1 L2 Regularization

The regularized cost function is:

Jreg(θ) = J(θ) +
λ

2m

n∑
j=1

w2
j ,

where λ is the regularization parameter.
Example: With w = [0.5645,−0.2785] and λ = 0.1 (assuming m = 1), the penalty is approximately:

0.1

2

(
0.56452 + (−0.2785)2

)
≈ 0.0396.
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8 Multi-class Logistic Regression (Softmax Regression)

For problems with more than two classes, logistic regression is extended via the softmax function.

8.1 Softmax Function and Hypothesis

For K classes, compute for each class k:

zk = wT
k x+ bk, k = 1, . . . ,K.

Then the probability that x belongs to class k is:

P (y = k | x; θ) = ezk∑K
j=1 e

zj
.

8.2 Decision Rule

The predicted class is determined by:

ŷ = argmax
k

P (y = k | x; θ).

8.3 Multi-class Cost Function

The cross-entropy loss for multi-class classification is:

J(θ) = − 1

m

m∑
i=1

K∑
k=1

1{y(i) = k} logP (y = k | x(i); θ).

8.4 Example: Digit Classification

Assume an image classifier outputs scores for three classes (digits 0, 1, 2):

z = [2.0, 1.0, 0.1].

Then:

e2.0 ≈ 7.39,

e1.0 ≈ 2.72,

e0.1 ≈ 1.105.

The sum is approximately 11.215, so:

P (y = 0 | x) ≈ 7.39

11.215
≈ 0.66, P (y = 1 | x) ≈ 2.72

11.215
≈ 0.242, P (y = 2 | x) ≈ 1.105

11.215
≈ 0.0985.

Thus, the predicted label is:
ŷ = argmax

k
P (y = k | x; θ) = 0.
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9 Summary and Conclusions

In Lecture 4, we covered the following:

• The linear model z = wTx+ b serves as the basis of the hypothesis.

• The sigmoid function, σ(z) = 1
1+e−z , transforms z into a probability.

• The decision boundary is defined by wTx+ b = 0, with classification performed by thresholding at 0.5.

• The cross-entropy loss function,

J(θ) = − 1

m

m∑
i=1

[
y(i) log

(
hθ(x

(i))
)
+ (1− y(i)) log

(
1− hθ(x

(i))
)]

,

is derived via maximum likelihood.

• L2 regularization is incorporated as:
λ

2m

n∑
j=1

w2
j ,

to control overfitting.

• For multi-class classification, the softmax function extends the model:

P (y = k | x; θ) = ew
T
k x+bk∑K

j=1 e
wT

j x+bj
,

with prediction via
ŷ = argmax

k
P (y = k | x; θ).

10 References

• The Elements of Statistical Learning (ESL), Section 4.4.1.

• Probabilistic Machine Learning: An Introduction (PML), Sections 10.2.1 and 10.2.2.

• Lec-4 class notes
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