
CS 412 — Introduction to Machine Learning (UIC) February 06, 2025

Lecture 5
Instructor: Aadirupa Saha Scribe(s): Amith Bhat Hosadurga Anand

Overview

In the last lecture, we covered the following main topics:

1. Logistic Regression

2. Multiclass Logistic Regression (MLR)

This lecture focuses on:

1. Multiclass Logistic Regression (contd)

2. MLE (Bernoulli)

3. MAP (Bernoulli)

1 Multiclass Logistic Regression

1.1 A Brief Recap of Multiclass Logistic Regression

Consider our Multiclass classification problem, with the input (or instance) space X . Each instance x ∈ X is
a d-dimensional real valued vector(i.e. x ∈ X ⊆ Rd).
The output space (or label space) y = {1, 2, 3....C} consists of class labels, where C represents the total
number of classes available for classification
The class of all linear multi-class logistic functions is given by

F lin. multiclass logistic
N =

{
fW : X → ∆C | fW (x)[j] =

exp(wT
j x)∑C

k=1 exp(w
T
k x)

, fW (x) ∈ ∆C , ∀x ∈ Rd

}

where

1. ∆C =
{
x ∈ [0, 1]C |

∑C
i=1 xi = 1

}
,

2. fW (x) is the probability distribution over C classes,

3. fW (x)[j] is the jth component of fW (x) ∈ ∆C , and

4. softmax(wT · x)j = exp(wT
j x)∑C

k=1 exp(w
T
k x)

5-1

We define W as

W =


← w1 →
← w2 →

...
← wC →


(C×d)

Definition 1 (Translation Invariance). A function f : X 7→ R is called translationally invariant if shifting its
input by some fixed amount does not change its output. That is, for all x ∈ X and for any translation a ∈ X ,
the function satisfies: f(x+ a) = f(x) ∀x, a ∈ X

Exercise 1.1: Softmax Function in translationally invariant

Prove that the softmax function defined above is translationally invariant in w meaning that shifting all
elements of w by the same scalar α does not change the output

softmax(w + α)j = softmax(w)j

for all j, where α ∈ R is a scalar added to each component of w

Solution

softmax(w + α)j = exp(wj+α)∑C
k=1 exp(wk+α)

= exp(wj) exp(α)∑C
k=1 exp(wk) exp(α)

= exp(wj)∑C
k=1 exp(wk)

= softmax(w)j

Since the softmax function is translation invariant under W , we can define W̃ = W −WC , knowing the
softmax function will give the same output taking either W or W̃ as the input.
Here WC is a matrix comprising of dimensions (C × d) where each row is wC i.e

WC =


← wC →
← wC →

...
← wC →

 =⇒ W̃ =


← w1 − wC →

...
← wC−1 − wC →
← wC − wC →

 =


← w1 − wC →

...
← wC−1 − wC →

← 0→


Since the last row is a d-dimensional vector of zeros, we can discard it leaving us with

W̃ =

 ← w1 − wC →
...

← wC−1 − wC →


(C−1×d)

Note: While we subtracted wC we could achieve the same result by subtracting any wj

Consider the case of Binary classification (C = 2), the dimensions of W̃ i.e (1, d) are consistent with the
dimensions of W defined there.
Henceforth whenever we use W in the course we are actually referring to W̃ of dimensions (C − 1)× d

5-2

1.2 Linear Multiclass - Logistic Regression Formulation

Next, we try to find the optimal weights W such our loss for Multiclass-Logistic Regression is minimized i.e
we want find

arg min
W∈RC×d

n∑
i=1

ℓ(yi, fW (xi))

where

ℓ(yi, fW (xi)) =
C∑
j=i

1(yi = j) (− log fW (xi)[j])

This is not an easy function to optimize due to the non-linearity of the softmax function and in fact does not
have a closed form solution in W . We will return to this later.

2 Maximum Likelihood Estimator - Bernoulli

2.1 MLE formulation for a Bernoulli Random Variable

Definition 2 (PMF of a Bernoulli Random Variable). Consider a random variable X that follows the Bernoulli
distribution i.e X ∼ Ber(p). Its probability mass function is given by

P (X = x) =

{
p, if x = 1

1− p, if x = 0

p is the parameter of the given Bernoulli Distribution

Instead of using cases we can express the pmf as single equation via exponents i.e P (X = x) = px ·(1−p)1−x

if x = 0 then P (X = 0) = p0 · (1− p)(1−0) = 1− p
if x = 1 then P (X = 1) = p1 · (1− p)(1−1) = p

Now we are given a dataset D = {(xi, yi)}ni=1, with our task being Binary classification.
Our inputs x ∈ X ⊆ Rd and our outputs or labels y = {0, 1} or {−1, 1} depending on our choice of notation.
Let us assume that our true labels yi ∼ Ber(µ∗) where µ∗ is the true parameter (that is unknown to us) which
we seek to estimate or learn.

We begin by defining our likelihood function, LD(µ).
Likelihood is the probability of observing the dataset D given the parameter (here) µ. This is equivalent to
P (D|µ).
We wish to find the µ that maximizes our likelihood, so what we have to find is

arg max
µ∈[0,1]

LD(µ) = arg max
µ∈[0,1]

P (D|µ)

Now substituting our earlier defined Dataset values we get

P (D|µ) = P ({(x1, y1), (x2, y2), · · · (xn, yn)}|µ)

5-3

We observe that each of the data points (xi, yi) are independent of each other i.e (x1, y1) is independent of
(x2, y2), (x3, y3) · · · (xn, yn) and vice versa.

Theorem 2.1: Independent Events

Given two independent events A and B:
P (A,B) = P (A) · P (B)

Applying this to our dataset we get

LD(µ) = P ({(x1, y1), (x2, y2), · · · (xn, yn)}|µ) =
n∏

i=1

P (xi, yi|µ)

Theorem 2.2: Conditional Probability

Given three events A, B and C:
P (A,B|C) = P (A|B,C) · P (B|C)

Applying this to our equation we get

LD(µ) =

n∏
i=1

P (xi, yi|µ) =
n∏

i=1

P (yi|xi, µ) · P (xi|µ) =
n∏

i=1

P (yi|xi, µ) · P (xi)

Since xi is independent of µ, P (xi|µ) simplifies to P (xi) in our last step.
Since P (xi) is independent of µ we can ignore this term hence forth in our derivation.

Note: After taking the log likelihood we obtain our MLE by differentiating w.r.t µ. Even if we did
not ignore P (xi) here, since P (xi) independent of µ its derivative w.r.t µ would be zero, more specifically
d
dµ log(P (xi)) = 0. Thus we can conclude P (xi), and more generally terms independent of the parameter
we are optimizing for (in this case µ), do not contribute to the optimization process.

Finding the value of the parameter that maximizes likelihood is equivalent to finding the value maximizes the
log of the likelihood. Hence taking log on both sides of our above equation

log(LD(µ)) = log

(
n∏

i=1

P (yi|xi, µ)·

)
= log

(
n∏

i=1

P (yi|µ)·

)

The last step follows since we know that from the way yi’s have been generated from the Bernoulli Distribution,
they do not depend on any xi’s. Now using our earlier defined pmf pf Bernoulli distribution we can say that

P (yi|µ) = µyi(1− µ)1−yi

Substituting this in our equation, and also converting the product to sum by the properties of logarithms we get

log(LD(µ)) = log

(
n∏

i=1

P (yi|µ)·

)
=

n∑
i=1

log
(
µyi(1− µ)1−yi

)
log(LD(µ)) =

n∑
i=1

yi · logµ+

n∑
i=1

(1− yi) · log(1− µ) = log µ ·
n∑

i=1

yi + log(1− µ) ·
n∑

i=1

(1− yi)

5-4

Before proceeding we define two new terms
Let N1 be the total number of time label 1 occurred in our dataset D, it can be defined as

N1 =
N∑
i=1

1(yi = 1) =
N∑
i=1

yi

Similarly let N0 be the total number of time label 0 occurred in our dataset D, it can be defined as

N0 =
N∑
i=1

1(yi = 0) =
N∑
i=1

(1− yi)

where N1 +N0 = n

Using this we can rewrite our original equation as

log(LD(µ)) = N1 log(µ) +N0 log(1− µ)

We need to find the µ that maximizes our likelihood or our log likelihood

arg max
µ∈[0,1]

log(LD(µ)) = arg max
µ∈[0,1]

(N1 log(µ) +N0 log(1− µ))

To obtain the argmax of the RHS:
1. Take the derivative w.r.t µ and equate it to zero.

2. Solve for µ

3. The µ so obtained is the MLE for µ

d

dµ
(N1 log(µ) +N0 log(1− µ)) = 0 =⇒ N1

µ
− N0

1− µ
= 0

Solving the above equation for µ we obtain µ̂MLE =
N1

N1 +N0

2.2 Examples

Exercise 2.1: Calculate µ̂MLE

Consider the following dataset D = {(x, 1), (x, 0), (x, 1), (x, 1)}
Q1) What is µ̂MLE?
Q2) Recalculate µ̂MLE for D = {(x, 1), (x, 1), (x, 1), (x, 1)}?

Solution:
1A) N1 = 3, N0 = 1 =⇒ µ̂MLE =

3

3 + 1
=

3

4
2A) µ̂MLE = 1
We see in both cases that µ̂MLE is over fitting the data
Further exercises on deriving MLE’s can be found in questions 2 and 3 of the bonus quiz and in reference 2

5-5

https://drive.google.com/file/d/1gWiUMzz8lrlBcbCRbx7uLitmw05BvfxL/view?usp=sharing
https://www.cs.cmu.edu/~aarti/Class/10701_Spring14/slides/MLE_MAP_Part1.pdf

3 Maximum Aposteriori Estimate - Bernoulli

3.1 MAP formulation for a Bernoulli Random Variable with a Beta Prior

For MLE we are choosing a parameter value that maximizes the probability of observed .Till now we have
only considered µ as a parameter but what if we had some prior information about µ.
Consider the following Prior: µ ∼ Beta(α, β).
Then we must find a way to incorporate this prior into our estimation i.e we must choose a parameter value
that is most probable given observed data and prior belief. We achieve this by maximizing the posterior
probability P (µ|D).
The estimator used here for this maximization is µ̂MAP = argmaxµ∈[0,1] P (µ|D)

Before continuing with this derivation we will first revisit the properties of the Beta distribution

Definition 3 (PDF of a Beta Random Variable). Consider a random variable X that follows the Bernoulli
distribution i.e X ∼ Beta(α, β). It’s probability density function is given by

P (X = x) =
xα−1 · (1− x)β−1

B(α, β)

where
B(α, β) =

Γ(α) · Γ(β)
Γ(α+ β)

where Γ(z) =

∫ ∞

0
tz−1 · e−tdt

Theorem 3.1: Bayes Theorem

Given two events A and B with P (B) ̸= 0 :

P (A|B) =
P (B|A) · P (A)

P (B)

Coming back to our derivation we can apply Bayes theorem to the posterior probability

arg max
µ∈[0,1]

P (µ|D) = arg max
µ∈[0,1]

P (D|µ).P (µ)

P (D)

where P (µ) is our prior belief of µ

Similar to the MLE derivation we will apply log function to make optimization easier

arg max
µ∈[0,1]

log

(
P (D|µ).P (µ)

P (D)

)
= arg max

µ∈[0,1]
(log(P (D|µ) + log(P (µ))− log(P (D))

Again similar to the MLE derivation we can ignore terms that are independent of µ, which is this case is P (D)
If we were to write D as {(x1, y1), (x2, y2), · · · (xn, yn)}we observe thatP (D|µ) = P ({(x1, y1), (x2, y2), · · · (xn, yn)}|µ)
The last equation is exactly the same as our likelihood function in our MLE derivation meaning we can
directly use the results of that derivation, more specifically

arg max
µ∈[0,1]

log(LD(µ)) = arg max
µ∈[0,1]

P ({(x1, y1), (x2, y2), · · · (xn, yn)}|µ) = arg max
µ∈[0,1]

(N1 log(µ) +N0 log(1− µ))

Next we can find P (µ) as we know µ ∼ Beta(α, β) =⇒ P (µ) =
µα−1 · (1− µ)β−1

B(α, β)

5-6

Substituting P (D|µ) andP (µ) in our original equation we obtain

arg max
µ∈[0,1]

(
N1 log(µ) +N0 log(1− µ) + log

(
µα−1 · (1− µ)β−1

B(α, β)

))
=⇒ arg max

µ∈[0,1]
(N1 log(µ) +N0 log(1− µ) + (α− 1) · logµ+ (β − 1) log(1− µ)− log(B(α, β))

We can drop log(B(α, β) as it is independent of µ so our function to optimize to becomes
arg max

µ∈[0,1]
(N1 log(µ) +N0 log(1− µ) + (α− 1) · logµ+ (β − 1) log(1− µ))

Similar to how we found µ̂MLE to obtain µ̂MAP we differentiate our function w.r.t µ and equate it to 0 and
solve for µ
Post differentiating we obtain

N1

µ
− N0

1− µ
+

α− 1

µ
− (β − 1)

1− µ
= 0

=⇒ (N1 + α− 1)

µ
=

N0 + β − 1

1− µ

=⇒ (N1 + α− 1)− (N1 + α− 1) · µ = (N0 + β − 1) · µ

=⇒ (N1 + α− 1) = (N0 + β − 1) · µ+ (N1 + α− 1) · µ

=⇒ (N1 + α− 1) = (N0 +N1 + α+ β − 2) · µ

Solving the above for µ we obtain our µ̂MAP which is

µ̂MAP =
N1 + α− 1

N0 +N1 + α+ β − 2

The presence of α and β in our final estimate of µ̂MAP indicates the influence of the prior belief on our MAP
estimate.

3.2 Examples

1. If α = β = 1, note that µ̂MAP = µ̂MLE

By substituting α = 1 and β = 1 in our equation for µ̂MAP we obtain

µ̂MAP =
N1 + 1− 1

N0 +N1 + 1 + 1− 2
=

N1

N1 +N0
= µ̂MLE

This holds as Beta(1, 1) is a Unif(0, 1) distribution.

Definition 4 (PDF of a Uniform Random Variable). Consider a random variable X that follows the
Bernoulli distribution i.e X ∼ Unif(a, b). It’s probability density function is given by

P (X = x) =


1

b− a
if x ∈ [a, b]

0 everywhere else

5-7

In our derivation for µ̂MAP we substituted the value P (µ) based on the prior.
If our prior was Beta(1, 1) i.e Unif(0, 1) then P (µ) works out to be

1

1− 0
= 1 =⇒ log(P (µ)) = 0.

From here, on continuing the derivation we would obtain the above result.
=⇒ In general MAP incorporates prior belief into the estimation process, while MLE assumes a
uniform prior, treating all values of µ as equally likely. (The constant value from the uniform prior
would get canceled/filtered out in the optimization process as seen above for our Unif(0, 1) case)

2. In Beta(α, β) distribution, a higher value of α =⇒ a “RIGHT” heavy pdf, which signals a large prior
on µ. This follows as µ̂MAP is higher for higher α (as α is in the numerator and the denominator)

Figure 1: Two “Right Heavy” Beta distributions

3. In contrast to 2. a higher Beta(α, β) =⇒ a “LEFT” heavy pdf which signals a small prior on µ. This
follows as µ̂MAP is lower for higher β (as β is only in the denominator) More such plots can be created

Figure 2: Two “Left Heavy” Beta distributions

by playing around with the parameters in the Beta Demo Notebook

5-8

https://colab.research.google.com/drive/1f5bPVRwAN9-iGLLKpauS3hGX8CxDyYkc?usp=sharing

4. Consider a dataset consisting of N1 = 6 positive instances and N0 = 4 negative instances, where each
observation is modeled as an independent Bernoulli trial with unknown probability. Initially assume
there in no prior or Uniform prior on µ

µ̂MLE =
N1

N1 +N0
=

6

10
= 0.6

Now assume that µ had a “LEFT” heavy prior of Beta(1, 10), then our map estimate becomes

µ̂MAP =
N1 + α− 1

N0 +N1 + α+ β − 2
=

6 + 1− 1

6 + 4 + 1 + 10− 2
=

6

19
∼ 0.3158

Instead of having a “LEFT” heavy prior instead assume a “RIGHT” heavy prior of Beta(10, 1), our
map estimate now becomes

µ̂MAP =
N1 + α− 1

N0 +N1 + α+ β − 2
=

6 + 10− 1

6 + 4 + 10 + 1− 2
=

15

19
∼ 0.7895

We observe how having different types of priors affect our estimates for µ in the graph below

Figure 3: Effect of Priors on estimating µ

Conjugate Priors

Any prior P (θ) is called the conjugate prior for a likelihood function L(θ) = P (D|θ) if the posterior P (θ|D)
is of the same distributional family as P (θ).
For example the Dirichlet distribution is the conjugate prior for the Multinomial distribution, meaning that
the posterior also follows a Dirichlet distribution. However, its parameters are updated based on observed
data and need not remain the same as those of the prior
More examples of Conjugate Priors can be found in reference 2 and reference 3

5-9

https://www.cs.cmu.edu/~aarti/Class/10701_Spring14/slides/MLE_MAP_Part1.pdf
https://www.cs.cmu.edu/afs/cs.cmu.edu/user/mitchell/ftp/mlbook.html#:~:text=Estimating%20Probabilities%3A%20MLE%20and%20MAP

Next Lecture

The next lecture will cover the following topics:

(i) MLE for Regression

(ii) MAP and Regularization

References:

1. Chapter 4.2, 4.5, Probabilistic Machine Learning - Kevin P. Murphy

2. Lecture 2, slides by Prof. Barnabás Póczos and Prof. Aarti Singh from course CMU-10701: Introduction
to Machine Learning, 2014 Spring [Link]

3. Estimating Probabilities: MLE-MAP, Machine Learning - Tom Mitchell [Link]

4. Maximum Likelihood Explanation[Link]

5. Beta Demo Notebook [Link]

5-10

https://www.cs.cmu.edu/~aarti/Class/10701_Spring14/slides/MLE_MAP_Part1.pdf
https://www.cs.cmu.edu/afs/cs.cmu.edu/user/mitchell/ftp/mlbook.html#:~:text=Estimating%20Probabilities%3A%20MLE%20and%20MAP
https://www.youtube.com/watch?v=XepXtl9YKwc
https://colab.research.google.com/drive/1f5bPVRwAN9-iGLLKpauS3hGX8CxDyYkc?usp=sharing

	Multiclass Logistic Regression
	A Brief Recap of Multiclass Logistic Regression
	Linear Multiclass - Logistic Regression Formulation

	Maximum Likelihood Estimator - Bernoulli
	MLE formulation for a Bernoulli Random Variable
	Examples

	Maximum Aposteriori Estimate - Bernoulli
	MAP formulation for a Bernoulli Random Variable with a Beta Prior
	Examples

