CS 412 — Introduction to Machine Learning (UIC) February 08, 2025

Lecture 6
Lecturer: Aadirupa Saha Scribe(s): Yugesh Sappidi

1 Overview

In the last lecture, we covered the following main topics:

* Continuation of Multiclass Logistic Regression
e Maximum Likelihood Estimation (MLE) for Bernoulli.
* Maximum a posteriori (MAP) Estimation for Bernoulli.

This lecture focuses on:

* Maximum Likelihood Estimation (MLE) for Categorical, Logistic, and Linear regression.
* Maximum a posteriori (MAP) estimation and its interpretation as regularization for Linear Regression.
* Regularized linear regression using L2 (Gaussian prior) and L1 (Laplace prior) penalties.

2 Recap of Last lecture

2.1 Bernoulli Distribution: MLE and MAP

Consider a binary random variable
y ~ Ber(y)

with unknown parameter u € [1]. Suppose we have a dataset

D:{y17"'ayn}

where each y; ~ Ber(u) independently.

MLE for the Bernoulli Distribution. The maximum likelihood estimate (MLE) is found by maximizing

the likelihood function: N

L(; D) = [ [ m# (1 =)'~
i=1
Let
Ny =#{i:y; =1} and Ny=n— Nj.

Then the MLE is given by
R M
MMLE = —.
n
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MAP with a Beta Prior. Assume a conjugate Beta prior for yu:
wu ~ Beta(a, b).
Then the posterior distribution is also Beta, and the MAP estimate becomes

N1+((L—1)

S R =)

For example, if a Beta(1, 1) (uniform) prior is assumed, then:

N
fimap = —  (i.e. the MAP equals the MLE).
n

The extra pseudo-counts (a — 1) and (b — 1) act as a regularizer for extreme cases.

3 Multiclass Classification and Categorical Distributions

Suppose we now have a multiclass classification task. Let the labels be
ye{l,2,...,C}.
We assume that each label follows a categorical distribution:

Yy~ Cat(p17p27 cee >pC)

with probabilities satisfying
C

pell]l, Y pi=1
j=1
3.1 MLE for the Categorical Distribution

Given a dataset
D ={y1,...,yn},
let
Ni=#{i:y; =5} forj=1,...,C.
The likelihood function is

Lip:D) =] [T,

and by taking the log-likelihood we have
C
log L(p; D) = > Njlogp;.
j=1

Maximizing this subject to Z]C:l p; = 1 yields the MLE:

e _ V)

i T
A corresponding Bayesian/M AP approach would introduce a Dirichlet prior (the multivariate generalization
of the Beta distribution) on p = (p1, ..., pc).
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4 Logistic Regression as an MLE Problem

Logistic regression can be viewed as a generalization of the categorical MLE. Suppose that each feature vector
x € R? (for example, representing a flower by its measurements) is associated with a label y € {1,2,...,C}.
In logistic regression, we parameterize the class probabilities as:

Ply=j|z;W)= ———,
(y=JlaW) SC ol
where
W = [wi,...,wc] € RIXC,

4.1 Negative Log-Likelihood (Cross-Entropy Loss)
Given a dataset D = {(z;, ;) }", the likelihood is:

L(W; D) =[] Pyi | zssW).
=1

Taking the negative log, we obtain the loss function:

n n

C
—log L(W; D) =Y [~ log P(y; | xssW)] =) llogze“;“ - wJ:cZ] :
k=1

i=1 =1 =

This is minimized with respect to the parameter matrix W during training.

Numerical Stability. In practice, the log-sum-exp trick is used:

c

c
T _ T,
log Z ek i = cur—nraxzi + log Z e(wr—wma) i
k=1 k=1

where wnax 1S chosen so that the exponentials remain numerically stable.

5 Linear Regression Through MLE
Consider a dataset with inputs and outputs:

D = {(xi,yi)}ieq, i € Rd, y; € R.
Assume that the outputs are generated by a linear model plus Gaussian noise:

yi | zi ~ N(w' i, 02).
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5.1 Deriving the MLE

The likelihood function is:

_ﬁ 1. C(yi —wTa)?
N 3 OXP 202 '

i=1

Taking the logarithm, we have (ignoring constants):
log L(w; D) 02 Z —w'z;)?

Maximizing this likelihood is equivalent to minimizing the sum of squared errors:

~ . T..\2
WMLE = arg H};H § (yi —w xz) .
i=1

Variance Estimation. The MLE for o2 is:
~2 1 T..32
IMLE = Z(yz —w z;)7,
although for an unbiased estimate one would use n — d in the denominator, where d is the number of features.

6 Regularization as MAP Estimation

Regularization in linear regression can be interpreted in a Bayesian setting via MAP estimation, where the
regularization term corresponds to the log-prior.
6.1 L2 Regularization (Ridge Regression)

Assume a Gaussian prior on w:
w ~ N(0,\711).

The log-prior is proportional to —||w||3. Combining this with the likelihood gives the MAP estimate:

n
Wmap = argmin [Z(y w'z;)? +)\||w||2] :
i=1

In closed form (when applicable), the solution is:
-1
W= (XTX + AI) xTy,

which can also be interpreted as adding \ to the eigenvalues of X ' X for numerical stability.



6.2 L1 Regularization (Lasso Regression)

Assume a Laplace prior on each component w;:

p(wj) o exp<—m)\j’) :

Thus, the MAP estimate becomes:

n
Wmap = argmin [Z(yz —w'z)? + )\Hw”ll :
i=1

The L1 penalty tends to produce sparse solutions by forcing some coefficients exactly to zero.

7 Advanced Topics and Practical Considerations

7.1 Hierarchical Models and Hyperparameter Tuning

The lecture also touches upon hierarchical Bayesian models where hyperparameters (such as a, b in the
Beta prior or A in the Gaussian prior) can be inferred from the data rather than set manually. One common
method is the Empirical Bayes approach, where hyperparameters are estimated by maximizing the marginal
likelihood:

A* = argm)z\xx/P(D | w)P(w | A) dw.

7.2 Limitations and Considerations

* Overfitting: MLE without regularization may lead to overfitting, especially in high-dimensional
settings.

* Prior Sensitivity: MAP estimates can be sensitive to the choice of prior. A misspecified prior (e.g.,
Laplace when the true coefficients are not sparse) can hurt performance.

* Computational Complexity: Bayesian approaches with non-conjugate priors may require approximate
inference techniques (such as Markov Chain Monte Carlo or variational inference).

8 Summary

In this lecture we unified frequentist and Bayesian approaches in machine learning:

* MLE provides a framework where loss minimization (e.g., cross-entropy for logistic regression or
squared loss for linear regression) emerges naturally from the assumption of a data likelihood.

* MAP estimation shows that regularization is equivalent to incorporating prior beliefs about the
parameters.

* Logistic regression and linear regression can both be derived from probabilistic assumptions on the
data, linking optimization to probability theory.

Future topics may extend these ideas to more advanced models such as non-conjugate priors and hierarchical
models.
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