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Overview

In the last lecture, we covered the following main topics:

1. MLE interpretation & Logistic regression

2. MLE interpretation of linear regression

3. MAP interpretation on regularized linear regression

This lecture focuses on:

1. Quick review of Bernoulli, Binomial, Categorical, and Multinomial Distribution

2. MLE interpretation of logistic regression

3. MAP interpretation on regularized logistic regression

4. Convex functions

1 Common Probability Distribution Functions in Machine Learning

In machine learning, feature vectors are numerical representations of data points that capture meaningful
information for modeling and prediction. Different types of probability distributions play a key role in
constructing and interpreting these feature vectors, as they describe the likelihood of various outcomes and
help in probabilistic modeling. Below, we discuss how the commonly encountered probability distributions
relate to different types of feature vectors in machine learning.

1.1 Bernoulli Distribution

The Bernoulli distribution is ideal for feature vectors containing binary attributes, where each feature
takes values in 0,1. This is common in classification problems, such as representing the presence (1) or
absence (0) of a feature in a dataset, like detecting spam in emails. Additionally, in logistic regression, the
Bernoulli distribution underlies the probabilistic model for binary classification, where the probability of
class membership is modeled using the sigmoid function.
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Definition 1.1: Bernoulli distribution

The probability mass function (PMF) for a Bernoulli-distributed random variable X with success
probability p is:

P (X = x) = px(1− p)1−x, x ∈ {0, 1} (1)

Which simply means:
P (X = 1) = p, P (X = 0) = 1− p. (2)

1.2 Binomial Distribution

The Binomial distribution applies to feature vectors where features represent counts of binary events across
multiple trials. The binomial distribution extends the Bernoulli distribution by repeating the experiment
multiple times. It models the number of successes in n independent trials, each with the same success
probability p.

Definition 1.2: Binomial Distribution

The PMF for a binomial random variable X , with k representing the number of successes, is:

P (X = k) =

(
n

k

)
pk(1− p)n−k, k = 0, 1, 2, . . . , n (3)

where k is number of success, and
(
n
k

)
is the binomial coefficient (”n choose k”), defined as:(

n

k

)
=

n!

k!(n− k)!
. (4)

This distribution applies to scenarios like counting how many heads appear in n coin tosses or how many
people in a group respond ”yes” to a survey.

1.3 Categorical Distribution

The Categorical distribution is a generalization of the Bernoulli distribution for multiple categories. It applies
to feature vectors with discrete, non-numeric values. Instead of just two outcomes (like success or failure), we
have K possible categories (e.g., choosing a color from a set of colors), each with its own probability. In
Categorical distribution instead of just two outcomes (like success or failure), we have K possible categories
(e.g., choosing a color from a set of colors), each with its own probability.

Definition 1.3: Categorical distribution

If X can take one of K possible outcomes with probabilities p1, p2, . . . , pK , the categorical PMF is:

P (X = i) = pi, for i = 1, 2, . . . ,K (5)

where the probabilities must sum to 1:

K∑
i=1

pi = 1. (6)
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1.4 Multinomial Distribution

The Multinomial distribution extends the binomial case to multiple categories and is used for feature vectors
where features correspond to the number of times each category appears in multiple trials. It models the
number of times each of K possible outcomes occurs over n independent trials.

Definition 1.4: Multinomial distribution

IfX1, X2, . . . , XK represent the counts of each outcome, and each outcome has probability p1, p2, . . . , pK ,
then the multinomial PMF is:

P (X1 = x1, X2 = x2, . . . , XK = xK) =
n!

x1!x2! . . . xK !
px1
1 px2

2 . . . pxK
K (7)

where the counts sum to n:

K∑
i=1

Xi = n. (8)

This distribution is used for problems like rolling a die multiple times and tracking how often each face
appears, or analyzing survey responses with multiple possible answers.

Remark 1. The terms Probability Mass Function (PMF) and Probability Distribution Function are sometimes
used interchangeably, but they have distinct meanings. A PMF applies to discrete random variables and gives
the probability that the variable takes a specific value, denoted as P (X = x). In contrast, a Probability
Distribution Function is a more general term that describes the probability distribution of a random variable.
For discrete variables, this can be the PMF, while for continuous variables, it is typically represented by the
Probability Density Function (PDF) or the Cumulative Distribution Function (CDF). The word ”distribution”
can refer to both PMFs and PDFs, as it broadly describes how probabilities are assigned to different values
of a random variable.

2 Logistic Regression and Maximum Likelihood Estimation

Assume we have a dataset D defined as:

D = {(Xi, yi)}Ni=1 (9)

where Xi ∈ Rd. Given that our task is binary classification, the labels yi can take values of either 0 or 1:

yi ∈ {0, 1} (10)

We further assume that the labels yi are generated from a Bernoulli distribution:

yi ∼ Bernoulli[σ(W TX)] (11)

where σ(W TX) represents the sigmoid function:

σ(W TX) =
1

1 + e−WTX
(12)
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The sigmoid function is illustrated in Figure 1. To enable the model to predict the labels y, we need to
determine an appropriate parameter W . This can be achieved by maximizing the likelihood function with
respect to W . The likelihood function is defined as:

LD(W ) =

n∏
i=1

P (yi|Xi;W ) (13)

Since working with sums is more convenient, we instead maximize the log-likelihood function:

W ∗ = argmax
W∈Rd

log(LD(W )) = argmax
W∈Rd

n∑
i=1

log(P (yi|Xi;W )) (14)

Using our assumption that yi come from Bernoulli distribution yi ∼ Bernoulli[σ(W TX)] , we can expand
the expression as follows:

W ∗ = argmax
W∈Rd

n∑
i=1

log[σ(W TX)
yi
+ (1− σ(W TX))

1−yi
]

= argmax
W∈Rd

n∑
i=1

[
yilog(

1

1 + e−WTX
) + (1− yi)log(1−

1

1 + e−WTX
)

]

= −

[
−argmax

W∈Rd

n∑
i=1

[
yilog(

1

1 + e−WTX
) + (1− yi)log(

1

1 + eWTX
)

]]
(15)

Since the negative of a maximization problem is equivalent to minimization, we rewrite the expression as:

W ∗ = argmin
W∈Rd

n∑
i=1

[
−yilog(

1

1 + e−WTX
)− (1− yi)log(

1

1 + eWTX
)

]
(16)

which simplifies to:

W ∗ = argmin
W∈Rd

n∑
i=1

[
yilog(1 + e−WTX) + (1− yi)log(1 + eW

TX)
]

(17)

This optimization problem is precisely the one solved in logistic regression, where we define the logistic loss
function as:

llogistic(y, p) = −
∑

[yilog(pi) + (1− yi)log(1− pi)] (18)

where yi is the true label and pi is the predicted probability:

pi = σ(W TXi) (19)

Thus, minimizing the logistic loss over the dataset D is equivalent to maximizing the likelihood function
with respect to W , under the assumption that yi follows a Bernoulli distribution parameterized by a sigmoid
function.
This provides the Maximum Likelihood Estimation interpretation of logistic regression. However, this
formulation does not account for normalization or prior knowledge about the parameters. How can we
incorporate regularization into the maximum likelihood framework?
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Figure 1: Sigmoid function

Regularization in logistic regression can be understood through the lens of Maximum A Posteriori (MAP)
estimation. Instead of treating W as a parameter to be estimated solely from data, we introduce a prior
distribution over W . This allows us to control the complexity of the model and prevent overfitting.
In some cases, we need to incorporate prior knowledge into our model. A prior serves a role similar to
regularization, as it imposes constraints on the parameter space. If our dataset reflects real-world observations
but we already have some prior belief (such as the assumption that a coin might have a certain bias) then the
parameter W is not just an arbitrary estimate but instead follows a probability distribution.
To obtain the L1 or L2 regularized form of logistic loss, we must assume a prior distribution over W .
Specifically:

• L2 regularization (Ridge) arises when we assume a Gaussian prior on W .

• L1 regularization (Lasso) arises when we assume a Laplacian prior on W .

By incorporating a prior, we move from a Maximum Likelihood Estimation (MLE) framework to a Maximum
A Posteriori (MAP) estimation, which naturally leads to regularized logistic regression.

3 Regularization in Maximum Likelihood Estimation

In many cases, we introduce regularization to prevent overfitting and to incorporate prior knowledge about
the parameters. Regularization in logistic regression can be interpreted in the framework of Maximum A
Posteriori (MAP) estimation, where we assume a prior distribution over W .

3.1 L2 Regularization (Ridge Regularization)

For L2 regularization we assume that the weight vector W follows a Gaussian prior. The Gaussian Probability
Density Function (PDF), also known as the normal distribution, is a fundamental concept in probability and
statistics. It describes how the values of a random variable are distributed in a symmetrical, bell-shaped curve.
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Definition 3.1: One dimensional Gaussian probability density function

In one dimension, a Gaussian PDF is denoted as N (µ, σ2) where µ is the mean (center) of the distribution
and σ2 is the variance, representing the spread of the distribution. If a random variable x follows this
distribution, its probability density function is given by:

P (x) =
1√
2πσ2

exp (−(x− µ)2

2σ2
); µ, σ ∈ R (20)

This can be extended to multiple dimensions, leading to the multivariate Gaussian distribution.

Definition 3.2: multivariate Gaussian probability density function

In multiple dimensions, multivariate Gaussian PDF denoted as N (µ,Σ) where µ is an d-dimensional
mean vector that represents the expected value of X:

µ =


µ1

µ2
...
µd

 (21)

and Σ is a d × d covariance matrix that describes variances and covariances between variables. If
a d-dimensional random vector X = (x1, x2, ..., xd) follows this distribution, its probability density
function is given by:

P (X) =
1

(2π)d/2|Σ|1/2
exp

(
−1

2
(X − µ)TΣ−1(X − µ)

)
; µ ∈ Rd, σ ∈ Rd×d (22)

Where |Σ| is the determinant of the covariance matrix, and Σ−1 is the inverse of the covariance matrix.

Remark 2. In multivariate Gaussian PDF, if Σ is diagonal, then the components of X are uncorrelated and
independent.

For L2 regularization, we assume that the weight vector W follows a d-dimensional Gaussian prior:

W ∼ N (0, λId×d) (23)
Here we set µ to zero vector and The covariance matrix Σ is assumed to be a scaled identity matrix λId×d

where λ is a positive scalar. This implies that the elements of W are independent and have the same variance
λ. Thus, the covariance matrix takes the following diagonal form:

Σd×d =


λ 0 0 · · · 0
0 λ 0 · · · 0
0 0 λ · · · 0
...

...
... . . . ...

0 0 0 · · · λ


d×d

(24)

To estimate the Maximum A Posteriori (MAP) value of W , we need to find the W that maximizes the posterior
probability P (W |D):
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W ∗ = argmax
W∈Rd

P (W |D) (25)

Using Bayes’ theorem, we can express this as:

W ∗ = argmax
W∈Rd

P (W |D) = argmax
W∈Rd

(P (D|W )P (W )) (26)

Since maximizing a function is equivalent to maximizing its logarithm, we take the log transformation:

W ∗ = argmax
W∈Rd

log(P (W |D)) = argmax
W∈Rd

[(log(P (D|W )) + log(P (W ))] (27)

The first term, P (D|W ), is computed using the Maximum Likelihood Estimation. Thus, we have to analyze
the prior probability P (W ). Given our covariance matrix Σ represented in equation (24), and noting that for
this covariance matrix:

Σ−1 =
1

λ
Id×d, |Σ| = λ (28)

the prior probability distribution of W is:

P (W ) =
1

(2π)d/2λ
exp(−1

2
W T Id×d

λ
W ) (29)

Since Id×dW = W we get:

W T Id×dW = W TW = ∥W∥22 (30)

Therefor, we have:

W ∗ = argmax
W∈Rd

[(log(P (D|W )) + log(P (W ))]

= argmax
W∈Rd

n∑
i=1

log(P (yi|Xi;W ) +

[
log

1

(2π)d/2λ
− ∥W∥22

2λ

]

= argmax
W∈Rd

n∑
i=1

−
[
yilog(1 + e−WTXi) + (1− yi)log(1 + eW

TXi)
]
+

[
log

1

(2π)d/2λ
− ∥W∥22

2λ

]
(31)

Since the term log( 1
(2π)d/2)λ

) is a constant, it does not affect the maximization process and can therefore be
ignored. By multiplying the expression by −1, we convert this maximization problem into a minimization
one, which results in the L2-regularized logistic regression formulation:

W ∗ = argmin
W∈Rd

n∑
i=1

[
yilog(1 + e−WTXi) + (1− yi)log(1 + eW

TXi)
]
+

∥W∥22
2λ

(32)

For clarity, the regularization term is given by:

1

2λ
∥W∥22 =

1

2λ

d∑
j=1

W 2
j (33)

Where Wj represents the weight of the j-th feature and λ is a tuning parameter that controls the strength of
the regularization. Smaller values of λ encourage smaller weights, leading to simpler models.
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This Gaussian prior assumption plays a crucial role in L2 regularization, as it encourages smaller weight
values and helps prevent overfitting by penalizing large coefficients.

3.2 L1 Regularization (Lasso Regularization)

For L1 regularization, we assume that the weight vector W follows a Laplace prior. The Laplace Probability
Density Function is commonly used in Bayesian statistics to impose sparsity on parameter estimates. The
Laplace distribution has sharper peaks at zero compared to the Gaussian distribution, encouraging many
weights to be exactly zero.

Definition 3.3: One dimensional Laplace probability density function

In one dimension, a Laplace PDF is denoted as Laplace(µ, b), where µ is the location parameter (center
of the distribution) and b is the scale parameter, which controls the spread of the distribution. If a random
variable x follows this distribution, its probability density function is given by:

P (x) =
1

2b
exp

(
−|x− µ|

b

)
; µ, b ∈ R (34)

This can be extended to multiple dimensions, leading to the multivariate Laplace distribution

Definition 3.4: multivariate Laplace probability density function

In multiple dimensions, multivariate Laplace PDF denoted as Laplace(µ,B), where µ is a d -dimensional
mean vector:

µ =


µ1

µ2
...
µd

 (35)

and B is a d × d scale matrix, which describes the dispersion of the distribution. If a d-dimensional
random vector X = (x1, x2, ..., xd) follows this distribution, for the case of diagonal scale matrix B, its
probability density function is given by:

P (X) =
1

2d|B|
exp

(
−

d∑
i=1

|xi − µi|
bi

)
; µ ∈ Rd, B ∈ Rd×d (36)

Where the term bi represents the scale parameter associated with the i− th component of the random
vector X . It controls the dispersion (spread) of the i − th variable around its mean µi. |B| is the
determinant of the scale matrix.

Remark 3. In multivariate Laplace PDF, if B is diagonal, then the components of X are uncorrelated and
independent.

Remark 4. Dispersion of the distribution, generally refers to how widely or narrowly the values are spread
out from the center, and in the case of the Laplace prior in L1 regularization, it controls the likelihood of
obtaining sparse weight vectors.
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For L1 regularization, we assume that the weight vector W follows a d-dimensional Laplace prior:

W ∼ Laplace(0, λId×d) (37)

Here as well, we set µ to the zero vector, and the scale matrix B is assumed to be a scaled identity matrix
λId×d, where λ is a positive scalar. This implies that the elements of W are independent and have the same
variance, leading to the following diagonal form:

Bd×d =


λ 0 0 · · · 0
0 λ 0 · · · 0
0 0 λ · · · 0
...

...
... . . . ...

0 0 0 · · · λ


d×d

(38)

In this case as well, in order to estimate the Maximum A Posteriori (MAP) value of W , we need to find the
W that maximizes the posterior probability P (W |D):

W ∗ = arg max
W∈Rd

P (W |D) (39)

By considering Laplace prior probability distribution for W and Considering our choice for the B matrix in
equation (38), and knowing that for this matrix determinant is equal to λ, the probability distribution of W is
as follows:

P (W ) =
1

2dλ
exp

(
−∥W∥1

λ

)
(40)

where ∥W∥1 =
∑d

j=1 |Wj | represents the L1 norm of W . By Using Bayes’ theorem, and following a similar
derivation as for L2 regularization, we can derive L1-regularized logistic regression formulation as follows:

W ∗ = arg max
W∈Rd

[
n∑

i=1

logP (yi|Xi;W ) + log

(
1

2dλ

)
− ∥W∥1

λ

]
(41)

By ignoring log(1/2dλ) and converting this maximization problem into a minimization one, L1-regularized
logistic regression formulation is:

W ∗ = arg min
W∈Rd

n∑
i=1

[
yi log(1 + e−WTXi) + (1− yi) log(1 + eW

TXi)
]
+

∥W∥1
λ

(42)

For clarity, the regularization term is given by:

1

λ
∥W∥1 =

1

λ

d∑
j=1

|Wj | (43)

where Wj represents the weight of the j-th feature, and λ is a tuning parameter that controls the strength of
the regularization.
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Smaller values of λ encourage sparser weights, leading to feature selection by forcing some weights to
be exactly zero. Larger values of λ result in more nonzero weights, leading to a denser model. Thus, L1
regularization not only prevents overfitting but also enforces sparsity, making it useful for feature selection.
To conclude this section, Table ?? provides a comparative summary ofL1 (Lasso) andL2 (Ridge) regularization,
outlining their key differences and respective advantages.

Feature L1 Regularization (Lasso) L2 Regularization (Ridge)
Prior Assumption Laplacian distribution: W ∼ Laplace(0, λI) Gaussian distribution: W ∼ N(0, λI)

Regularization
Term

1
λ

∑
|Wj | (absolute values of weights) 1

2λ

∑
W 2

j (squared values of weights)

Effect on Weights Induces sparsity: some weights become ex-
actly zero

Shrinks all weights smoothly, but none
become zero

Feature Selection Can be used for feature selection (eliminates
irrelevant features)

Retains all features but reduces their
impact

Optimization Non-differentiable at zero (requires sub-
gradient methods)

Differentiable everywhere (easier to
optimize with gradient-based methods)

Bias-Variance
Tradeoff

Higher bias, lower variance (better for sparse
models)

Lower bias, higher variance (better for
dense models)

When to Use? When feature selection is important (reducing
irrelevant features)

When all features contribute to predic-
tion but need to be controlled

Interpretability Easier to interpret due to zero coefficients Harder to interpret as all coefficients
remain nonzero

Computational
Complexity

Can be computationally expensive for high-
dimensional data due to feature selection

Computationally more stable and effi-
cient in high dimensions

Table 1: Comparison of L1 (Lasso) and L2 (Ridge) Regularization

4 Convex functions

In machine learning we always encounter with minimizing task which we have to find value or vectors which
minimize a function typically Loss functions or inverse of MLE or MAP functions we saw in previouse
section. Gradient descent is one of the most effective to fullfill this goal. However, this method only works
well if certain conditions are met and convexity of the loss function is one of these conditions. Therefore,
before explaining the gradient descent method, we need to elaborate on convexity. Convexity of a function
means that that function dont have local minimums and has only global minumum. this ensures that in the
process of minimizing does not get stuck in local minimums.
In machine learning, we frequently encounter optimization problems where we aim to minimize a function,
such as a loss function or the negative log-likelihood derived from Maximum Likelihood Estimation or
Maximum A Posteriori estimation. Many of the techniques we use, such as gradient descent, are effective
only under certain conditions, and one of the most critical conditions is convexity. Convexity of a function
ensures that the function lies below the straight line connecting any two points on its graph, forming a ”bowl”
shape. If the inequality is strict for all x1 ̸= x2, the function is strictly convex, meaning it has a unique
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global minimum. Convexity is crucial because it guarantees that the function has no local minima apart
from the global minimum, ensuring that gradient-based methods like gradient descent will not get trapped
in suboptimal points. Additionally, optimization methods remain efficient and converge reliably, providing
computational stability when finding optimal parameters.
For example, in logistic regression, we optimize the negative log-likelihood function which is convex in W ,
meaning gradient descent will efficiently find the optimal parameters. When we add regularization terms
to logistic regression, convexity is preserved, which ensures stable and efficient optimization. How can we
deteremine if a function is convex?

To discuss the main definition of a convex function, it is useful to begin by introducing the concept of a convex
combination.

Definition 4.1: Convex combination

For any two fixed points x1, x2 ∈ R , we define the function A(λ) as follows:

A(λ, x1, x2) = λx1 + (1− λ)x2; λ ∈ [0, 1] (44)

This function is called a convex combination.

This function generates any point between x1 and x2 by varying λ within the interval [0, 1]. For example the
function generates x2 when λ = 0 and x1 when λ = 1.

A(λ, x1, x2) =

{
x1, λ = 1

x2, λ = 0
(45)

For any intermediate value of λ, the function produces a point between x1 and x2. By choosing an appropriate
λ, one can obtain any desired interpolation between these two points.

4.1 Convexity main definition

The main definition of convex functions can be expressed as follows:

Definition 4.2: Convexity main definition

A one dimenensional function f : D → R is convex in a specific domain D ⊆ R if, for every x1, x2 ∈ D
and 0 ≤ λ ≤ 1, the following inequality holds:

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2) (46)

It is strictly convex if, for every x1, x2 ∈ D and 0 ≤ λ ≤ 1, the following stricter inequality holds:

f(λx1 + (1− λ)x2) < λf(x1) + (1− λ)f(x2) (47)

Remark 5. Using the concept of a convex combination, the convexity condition can be equivalently expressed
as:

f(A(λ, x1, x2)) ≤ A(λ, f(x1), f(x2)); λ ∈ [0, 1], x1, x2 ∈ R (48)
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Figure 2: Graphical representation of a convex function

Figure 3: Graphical representation of Non-Convex functions

This condition implies that, within the convexity domain of the function, the function’s value at any convex
combination of two points is always less than or equal to the convex combination of their function values.
Geometrically, this means that the graph of a convex function always lies on or below the straight line
connecting any two points on the function. This is illustrated in the Figure 2 where the yellow curve represents
the convex function f(x), two points, (x1, f(x1)) and (x2, f(x2)), are chosen on the function and the red line
segment connecting these points represents the convex combination of their function values. The yellow dot
shows the function’s value at an intermediate point, while the green dot represents the convex combination
of the function values. Since the yellow dot is always below (or on) the red line, the convexity condition is
visually demonstrated. Further examples are shown in Figure 3. Unlike the previous case, in these examples,
there exist points on the straight line connecting f(x1) and f(x2) that lie below (or on) the function’s value at
a corresponding x. This indicates that these curves are not convex, as they fail to satisfy the convexity condition.

It is evident that the convexity of a function should be rigorously examined using mathematical conditions, as
this is the most reliable method. This approach will be discussed in more detail in the next session. However,
a simple rule of thumb for visually assessing convexity from a graph is to check whether any straight line
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Figure 4: Convexity Check Exercise

drawn between two points on the curve lies at least partly below the function or crosses it. If this occurs, the
function is not convex.
As an exercise, try checking the convexity of some graphs shown in figure 4.

Exercise 4.1: Convexity

Determine whether the graphs in figure 4 are convex.

Next Lecture

The next lecture will cover the following topics:
(i) Convexity,
(ii) Key properties of a loss function that improve gradient descent convergence.,
(iii) Introduction to Gradient Descent .

References:

1. Book ”Pattern Recognition and Machine Learning” by Christopher M. Bishop, Chapter 2: Probability
Distributions, Chapter 4:Linear models for classification.
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2. Book ”Mathematical Statistics and Data Analysis” by John A. Rice, Chapter 2: Random Variables.

3. Book ”The Elements of Statistical Learning” by Hastie, Tibshirani, and Friedman, Chapter 4: Linear
Methods Classification.

4. Book ”Machine Learning: A Probabilistic Perspective” by Kevin P. Murphy, Chapter 8: Bayesian
Logistic Regression.

5. Lecture note by Andrew Ng on Logistic Regression, MLE for logistic regression.

6. Lecture note by Henry Chai & Zack Lipton on MLE & MAP, Machine Learning Lecture 6
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