
CS 412 — Introduction to Machine Learning (UIC) February 18, 2025

Lecture [9]
Instructor: Aadirupa Saha Scribe(s): Datta Sai V V N

Overview

In the last lecture, we covered the following main topics:

1. Properties of Cvx funcs

2. Gradient descent (GD)

3. Convergence rates

This lecture focuses on:

1. Convergence of GD

2. Taylor Series Approximation

3. Newton’s Method

1 Conversion Rates & Gradient Descent

Gradient Descent (GD) is an optimization algorithm used to find a local minimum of a function. The learning
rate plays a crucial role in determining how quickly the algorithm converges.

1.1 Convergence Rate of Gradient Descent

Algorithm 1.1: Gradient Descent Update Rule

Update Rule:
xt+1 = xt − η∇f(xt)

where:
xt is the current point
η is the learning rate
∇f(xt) is the gradient at xt

1.1.1 Assumption

• The function f : Rd → R is convex and L-Lipschitz.

[9]-1

Theorem 1.1:

Convergence Rate of Gradient Descent

Theorem 1. Let f : Rd → R be a convex and L-Lipschitz function. Then the gradient descent algorithm
satisfies:

f(x̄T)− f(x∗) ≤ ∥x1 − x∗∥2L√
T

where:
- x∗ is the optimal point (minimizer of f(x)). - x̄T is the averaged iterate:

x̄T =
1

T

T∑
t=1

xt

This result shows that gradient descent has a convergence rate of O(1/
√
T) for general convex functions.

1.2 Sublinear Convergence of Gradient Descent: O(1/
√
T)

Figure 1: Sublinear Convergence of Gradient Descent: O(1/
√
T)

Graph Interpretation:

• The cyan curve represents the theoretical convergence rate O(1/
√
T), showing how the sub-optimality

gap shrinks as T increases.

[9]-2

• The red dashed line at ε = 0.01 represents the target error threshold.

• The yellow vertical line at T = 104 marks the required iterations for Gradient Descent to ensure that
the function value is within 0.01 of the optimal.

• This graph visually confirms the theoretical result that Gradient Descent exhibits sublinear convergence.

1.3 Sub-Optimality Gap

Sub-Optimality Gap Definition 1 The Sub-Optimality Gap of a point x is defined as:

Sub-Opt Gap(x) = f(x)− f(x∗)

where:

• f(x) is the function value at x,

• f(x∗) is the optimal function value (at the minimizer x∗).

♢

Theorem 1.2:

Sub-Optimality Gap for Averaged Iterate

Theorem 2. For the averaged iterate x̄T , the Sub-Optimality Gap satisfies:

Sub-Opt Gap(x̄T) =
∥x1 − x∗∥2L√

T

This result matches the convergence rate shown in Algorithm 1.1

1.4 Real-World Application: Sub-Optimality Gap in Machine Learning Optimization

Why is the Sub-Optimality Gap Important?
In practical machine learning, the sub-optimality gap measures how far a current solution is from the
optimal model parameters. It is widely used to evaluate optimization algorithms in deep learning and convex
optimization.

Key Applications:

• Neural Network Training: - During training, loss minimization follows a sub-optimality gap reduction.
- Convergence analysis ensures models are optimized efficiently.

• Hyperparameter Tuning: - Gradient-based optimization methods rely on tracking sub-optimality gap
for learning rate adjustments.

• Convex Optimization Problems: - Used in Lasso regression, SVM training, and logistic regression. -
Ensures optimal parameter selection over iterations.

[9]-3

1.5 Example: Finding T for a Given Sub-Optimality Gap

Exercise 1.1:

Problem Setup

• Suppose we have a convex function f : Rd → R.

• It is 1-Lipschitz (i.e., L = 1).

• The initial distance from the optimum is known:

∥x1 − x∗∥2 = 1

Objective: Find T such that the Sub-Optimality Gap satisfies:

f(x̄T)− f(x∗) = ε

Step 1: Using the Convergence Rate Formula
We know that for convex functions, Gradient Descent satisfies:

f(x̄T)− f(x∗) ≤ ∥x1 − x∗∥2L√
T

Substituting known values:
1 · 1√
T

= ε

Step 2: Solving for T
For a given ε = 0.01, we set up the equation:

1√
T

= 0.01

Squaring both sides:
T =

1

(0.01)2
= 104

Step 3: Interpretation

• If Gradient Descent is run for 104 steps, then we guarantee:

f(x104)− f(x∗) ≤ 0.01

• This means that after 10,000 iterations, the function value is at most 0.01 away from the optimal
function value.

[9]-4

1.6 Visual Representation for a Given Sub-Optimality Gap:

Figure 2: Finding T for a Given Sub-Optimality Gap

Graph Interpretation:

• The red dashed line marks the error threshold ε = 0.01, indicating the desired level of accuracy.

• The yellow vertical line at T = 104 shows the number of iterations required to ensure that the function
value is at most 0.01 away from the optimal function value.

• This visualization confirms that Gradient Descent requires at least 104 iterations to meet the specified
accuracy.

• Thus, the graph provides an intuitive visual confirmation of the theoretical convergence rate and the
required iterations for a given accuracy.

1.7 Comparison of Convergence Rates

Function Type Convergence Rate Steps for ε = 0.01

Convex Only O(1/
√
T) 104

Convex + Smooth O(1/T) 201
Strongly Convex O(1/T) 201
Strongly Convex + Smooth O(e−T/κ) 10

[9]-5

2 Taylor Series Approximation

2.1 Definition

Theorem 2.1:

Taylor Series Expansion For a function f : R → R, the Taylor series expansion around a point x is:

f(x+ δ) = f(x) + δf ′(x) +
δ2

2
f ′′(x) +

δ3

3!
f ′′′(x) + . . . (1)

where:

• f ′(x) = df
dx (first derivative)

• f ′′(x) = d2f
dx2 (second derivative)

• f ′′′(x), etc., represent higher-order derivatives.

2.2 Example: f(x) = ax2

Let’s approximate f(x) = ax2 using Taylor series.

Exercise 2.1:

First, compute derivatives:

f ′(x) = 2ax

f ′′(x) = 2a

f ′′′(x) = 0 (all higher-order derivatives are zero)

Applying Taylor expansion:

f(x+ δ) = f(x) + δf ′(x) +
δ2

2
f ′′(x) + 0 (2)

Substituting values:

f(x+ δ) = ax2 + δ(2ax) +
δ2

2
(2a)

= ax2 + 2axδ + aδ2

= a(x+ δ)2

Thus, LHS = RHS, verifying that Taylor series provides an exact approximation for quadratic
functions.

[9]-6

3 Intuition: Why Gradient Descent (GD) Works

Gradient Descent (GD) is based on the first-order approximation of a function using Taylor series.

3.1 Taylor Series Approximation

Taylor series allows us to approximate a function f(x) around a point by expanding it in terms of its derivatives.
This helps us analyze how function values change with small steps in x, which is fundamental to the working
of GD.

Theorem 3.1:

Taylor Series Expansion For a function f : R → R, expanding f(x+ δ) gives:

f(x+ δ) = f(x) + δf ′(x) +
δ2

2
f ′′(x) +

δ3

3!
f ′′′(x) + . . . (3)

where:

• f ′(x) is the first derivative,

• f ′′(x) is the second derivative,

• Higher-order terms contain δ2, δ3, . . ., which become very small for small δ.

3.2 Ignoring Higher-Order Terms

In optimization, small step sizes δ make higher-order terms insignificant. This allows us to approximate
the function using only the first derivative, leading to a simpler and computationally efficient model for
optimization.

Exercise 3.1: I

f δ is small (e.g., δ = 0.001), then:

δ2 = (0.001)2 = 10−6, δ3 = 10−9, . . .

These higher-order terms become negligible, leaving us with:

f(x+ δ) ≈ f(x) + δf ′(x) (4)

This is a first-order approximation, meaning that for small steps, we can approximate function
behavior using just the gradient f ′(x).

[9]-7

3.3 How Gradient Descent Uses This Approximation

Exercise 3.2:

Gradient Descent chooses δ such that:

δ = −ηf ′(x) (5)

where η is the step size (learning rate).
Plugging into the approximation:

f(x− ηf ′(x)) ≈ f(x)− ηf ′(x)2 (6)

Ensuring Descent:
Since ηf ′(x)2 ≥ 0, we guarantee:

f(xt+1) < f(xt) (7)

Thus, the function value always decreases, ensuring descent.

3.4 Visualization of Gradient Descent Using Taylor Approximation

Figure 3: Visualization of Gradient Descent Using Taylor Approximation

The blue curve represents the function f(x) = 1
2x

2. The red point is the current position xt, and the green
point is the updated position after applying gradient descent. The orange dashed line represents the first-order
Taylor approximation (tangent line), demonstrating how GD follows the gradient to minimize the function.

[9]-8

4 Newton’s Method: A Second-Order Optimization Approach

Newton’s Method is an optimization technique that uses second-order information (Hessian matrix or
second derivative) to accelerate convergence.

4.1 Second-Order Approximation using Taylor Series

Newton’s Method relies on a second-order Taylor expansion to approximate a function more accurately
than first-order methods like Gradient Descent. By incorporating the second derivative f ′′(x), this approach
provides a better understanding of the function’s curvature, helping optimize step sizes. The higher-order
terms are ignored as δ is assumed to be small, making the approximation computationally efficient.

Theorem 4.1:

Second-Order Taylor Approximation We approximate f(x + δ) using Taylor expansion up to the
second order:

f(x+ δ) = f(x) + δf ′(x) +
δ2

2
f ′′(x) + . . . (8)

Higher-order terms (δ3, etc.) are ignored since δ is assumed to be small.

4.2 Finding the Optimal Step δ

To ensure maximum decrease in the function f(x), Newton’s Method derives an optimal step size using
second-order information. By setting the derivative of the Taylor approximation to zero, we solve for δ as:

Exercise 4.1: T

o maximize the decrease in f(x+ δ), we solve:

min
δ

f(x+ δ) = min
δ

[
f(x) + δf ′(x) +

δ2

2
f ′′(x)

]
(9)

Taking the derivative w.r.t. δ and setting it to zero:

f ′(x) +
δf ′′(x)

2
= 0 (10)

Solving for δ:

δ = − f ′(x)

f ′′(x)
(11)

This is Newton’s optimal step size.

[9]-9

4.3 Newton’s Algorithm

Algorithm 4.1: Newton’s Method Update Rule

Using the Newton step δ in an iterative update:

xt+1 = xt −
f ′(xt)

f ′′(xt)
(12)

For multivariate cases (d > 1), the update rule is:

xt+1 = xt − [∇2f(xt)]
−1∇f(xt) (13)

where:

• ∇f(xt) is the gradient.

• ∇2f(xt) is the Hessian matrix (second-order derivatives).

4.4 Advantages of Newton’s Method

• Faster Convergence: Quadratic convergence near optimal solutions.

• Better Step Size Selection: Uses second-derivative information instead of a manually chosen learning
rate.

• More Precise: Effective for convex functions with well-conditioned Hessians.

4.5 Limitations

• Computationally Expensive: Requires computing the Hessian and its inverse.

• Not Always Feasible: Hessian inversion is difficult for high-dimensional problems.

4.6 Comparison with Gradient Descent

Method Update Rule Convergence Rate

Gradient Descent xt+1 = xt − η∇f(xt) O(1/T) (for smooth & convex)

Newton’s Method xt+1 = xt − [∇2f(xt)]
−1∇f(xt) O(log T) (quadratic convergence)

Table 1: Comparison of Gradient Descent and Newton’s Method

[9]-10

5 Implemented a Project Using a Dataset for the Above Lecture

To complement the theoretical concepts discussed in the lecture, I have implemented a project that applies
Gradient Descent and Newton’s Method to a real-world dataset. This project provides a visual and practical
understanding of these optimization techniques.

5.1 Project Overview

The project involves:

• Implementing Gradient Descent and analyzing its convergence rate.

• Implementing Newton’s Method and observing its faster convergence.

• Comparing both methods to highlight their strengths and trade-offs.

5.2 Accessing the Project

The project has been implemented in a Jupyter Notebook. You can download and explore the implementation
using the link below:

Download Gradient Descent & Newton’s Method Project

By referring to this notebook, you can visualize the optimization process, understand the theoretical concepts
in action, and see how these methods perform on real-world data.

Next Lecture

The next lecture will cover the following topics:
(i) GD convergence analysis,
(ii) SGD + Convergence guarantees,
(iii) Batched SGD,
(iv) Variants of GD.

References:

1. Lecture notes by Prof. Aadirupa Saha from course CS 412 Intro to ML Lec.9.pdf

[9]-11

https://colab.research.google.com/drive/1WAehA3K2TRPJZTuwnlbJYbA7PeupQnAb?authuser=1
https://cdn-uploads.piazza.com/paste/m53oyfstnlr6gy/bcdf893a7729f48a597f7f7ef7232f1c424afdf28ea6d519a95b493bcf3e77e2/Lec9.pdf

	Conversion Rates & Gradient Descent
	Convergence Rate of Gradient Descent
	Assumption

	Sublinear Convergence of Gradient Descent: O(1/T)
	Sub-Optimality Gap
	Real-World Application: Sub-Optimality Gap in Machine Learning Optimization
	Example: Finding T for a Given Sub-Optimality Gap
	Visual Representation for a Given Sub-Optimality Gap:
	Comparison of Convergence Rates

	Taylor Series Approximation
	Definition
	Example: f(x) = ax2

	Intuition: Why Gradient Descent (GD) Works
	Taylor Series Approximation
	Ignoring Higher-Order Terms
	How Gradient Descent Uses This Approximation
	Visualization of Gradient Descent Using Taylor Approximation

	Newton’s Method: A Second-Order Optimization Approach
	Second-Order Approximation using Taylor Series
	Finding the Optimal Step
	Newton’s Algorithm
	Advantages of Newton’s Method
	Limitations
	Comparison with Gradient Descent

	Implemented a Project Using a Dataset for the Above Lecture
	Project Overview
	Accessing the Project

