CS 412 — Introduction to Machine Learning (UIC) February 18, 2025

Lecture [9]
Instructor: Aadirupa Saha Scribe(s): Datta Sai VV N

Overview

In the last lecture, we covered the following main topics:
1. Properties of Cvx funcs
2. Gradient descent (GD)
3. Convergence rates
This lecture focuses on:
1. Convergence of GD
2. Taylor Series Approximation

3. Newton’s Method

1 Conversion Rates & Gradient Descent

Gradient Descent (GD) is an optimization algorithm used to find a local minimum of a function. The learning
rate plays a crucial role in determining how quickly the algorithm converges.

1.1 Convergence Rate of Gradient Descent

Algorithm 1.1: Gradient Descent Update Rule

Update Rule:
Tr11 = 2t — NV f(21)

where:
x; is the current point
7 is the learning rate
V f(x) is the gradient at z;

1.1.1 Assumption

* The function f : R — R is convex and L-Lipschitz.

[9]-1

Theorem 1.1:

Convergence Rate of Gradient Descent

Theorem 1. Let f : R? — R be a convex and L-Lipschitz function. Then the gradient descent algorithm
satisfies:

lz1 — 2*||*L

f(@r) = f(a") < Nia

where:
- o is the optimal point (minimizer of f(x)). - T is the averaged iterate:

1 T
jj’::jjgg;xt

This result shows that gradient descent has a convergence rate of O(1/ VT) for general convex functions.

1.2 Sublinear Convergence of Gradient Descent: O(1//T)

Sublinear Convergence of Gradient Descent: O(l/\/?)

100 L
o
©
O
fin)
g 10—1 L
a
Q
)
>
wn
Theoretical O(1/VT)
T=10*
107 2F===€=0.01
100 10! 107 103 104

Iterations (T)

Figure 1: Sublinear Convergence of Gradient Descent: O(1/v/T)
Graph Interpretation:

» The cyan curve represents the theoretical convergence rate O(1/+/T), showing how the sub-optimality
gap shrinks as 7" increases.

[91-2

* The red dashed line at ¢ = 0.01 represents the target error threshold.

* The yellow vertical line at 7" = 10* marks the required iterations for Gradient Descent to ensure that
the function value is within 0.01 of the optimal.

* This graph visually confirms the theoretical result that Gradient Descent exhibits sublinear convergence.

1.3 Sub-Optimality Gap
Sub-Optimality Gap Definition 1 The Sub-Optimality Gap of a point x is defined as:

Sub-Opt Gap(x) = f(x) — f(z")

where:
* f(x) is the function value at z,

o f(x*) is the optimal function value (at the minimizer x*).

Theorem 1.2:

Sub-Optimality Gap for Averaged Iterate
Theorem 2. For the averaged iterate T, the Sub-Optimality Gap satisfies:

. =1 — 2*||*L
Sub-Opt Gap(Z7) = ———
VT

This result matches the convergence rate shown in Algorithm 1.1

1.4 Real-World Application: Sub-Optimality Gap in Machine Learning Optimization

Why is the Sub-Optimality Gap Important?

In practical machine learning, the sub-optimality gap measures how far a current solution is from the
optimal model parameters. It is widely used to evaluate optimization algorithms in deep learning and convex
optimization.

Key Applications:

* Neural Network Training: - During training, loss minimization follows a sub-optimality gap reduction.
- Convergence analysis ensures models are optimized efficiently.

* Hyperparameter Tuning: - Gradient-based optimization methods rely on tracking sub-optimality gap
for learning rate adjustments.

* Convex Optimization Problems: - Used in Lasso regression, SVM training, and logistic regression. -
Ensures optimal parameter selection over iterations.

[9]-3

1.5 Example: Finding 7" for a Given Sub-Optimality Gap

Problem Setup

* Suppose we have a convex function f : RY — R.
e Itis 1-Lipschitz (i.e., L = 1).
* The initial distance from the optimum is known:
ey — | = 1
Objective: Find 7" such that the Sub-Optimality Gap satisfies:

f(@r) = f(a") =«

Step 1: Using the Convergence Rate Formula
We know that for convex functions, Gradient Descent satisfies:

_ N et (2
Tr) — f(z°) L ———
f(T) f() — \/T
Substituting known values:
1-1
—_— 5
VT
Step 2: Solving for T’
For a given ¢ = 0.01, we set up the equation:
1
— =0.01
vT
Squaring both sides:
1
7= = 10*
(0.01)2

Step 3: Interpretation
» If Gradient Descent is run for 10* steps, then we guarantee:
f(@101) — f(2¥) <0.01

 This means that after 10,000 iterations, the function value is at most 0.01 away from the optimal
function value.

[9]-4

1.6 Visual Representation for a Given Sub-Optimality Gap:

Finding T for a Given Sub-Optimality Gap

—— Theoretical O(1/VT)
£=0.01 threshold
—-—- T=10%iterations

o)
©
O
>
=
©
£
=
o
Q
o)
=]
n

4000 6000 8000 10000
Iterations (T)

Figure 2: Finding 7 for a Given Sub-Optimality Gap
Graph Interpretation:
* The red dashed line marks the error threshold € = 0.01, indicating the desired level of accuracy.

* The yellow vertical line at 7" = 10* shows the number of iterations required to ensure that the function
value is at most 0.01 away from the optimal function value.

* This visualization confirms that Gradient Descent requires at least 10* iterations to meet the specified
accuracy.

* Thus, the graph provides an intuitive visual confirmation of the theoretical convergence rate and the
required iterations for a given accuracy.

1.7 Comparison of Convergence Rates

Function Type Convergence Rate | Steps for ¢ = 0.01
Convex Only O(1/VT) 10%
Convex + Smooth O(1/T) 201
Strongly Convex O(1/T) 201
Strongly Convex + Smooth O(eT/%) 10

[9]-5

2 Taylor Series Approximation

2.1 Definition

[Theorem 2.1:

Taylor Series Expansion For a function f : R — R, the Taylor series expansion around a point is:

52 53
f(x+0) = f2) + 6" () + 5 (@) + 5 /" (@) + ... M
where:
o fl(x) = % (first derivative)
_ &

« f’(x) = 5% (second derivative)

» f"'(x), etc., represent higher-order derivatives.

\

2.2 Example: f(z) = ax?

Let’s approximate f(z) = ax? using Taylor series.

First, compute derivatives:
(o) = 2az
f"(@) = 2a

f"(x) =0 (all higher-order derivatives are zero)

Applying Taylor expansion:

2
fla+6) = f(z) +6f"(z) + %f”(w) +0 @)

Substituting values:

52
f(z+6) = ax? + §(2azx) + 5(2@

= ax’® + 2ax6 + ad?
= a(z +0)?

Thus, LHS = RHS, verifying that Taylor series provides an exact approximation for quadratic

functions.

[9]-6

3 Intuition: Why Gradient Descent (GD) Works

Gradient Descent (GD) is based on the first-order approximation of a function using Taylor series.

3.1 Taylor Series Approximation

Taylor series allows us to approximate a function f(x) around a point by expanding it in terms of its derivatives.
This helps us analyze how function values change with small steps in 2, which is fundamental to the working
of GD.

[Theorem 3.1:
Taylor Series Expansion For a function f : R — R, expanding f(x + 0) gives:

52 53
fl@+06) = f(z) +f' (@) + (@) + 57" (@) + .. 3)
where:
 f'(x) is the first derivative,

 f”(x) is the second derivative,

* Higher-order terms contain 62, 63, . . ., which become very small for small §.

3.2 Ignoring Higher-Order Terms

In optimization, small step sizes § make higher-order terms insignificant. This allows us to approximate
the function using only the first derivative, leading to a simpler and computationally efficient model for
optimization.

Exercise 3.1: 1

f g is small (e.g., 6 = 0.001), then:
6% = (0.001)2=10"%, & =107"7,...
These higher-order terms become negligible, leaving us with:

fl@+0)~ f(z) +of (2) 4)

This is a first-order approximation, meaning that for small steps, we can approximate function
behavior using just the gradient f’(x).

[91-7

3.3 How Gradient Descent Uses This Approximation

Gradient Descent chooses § such that:
0 =—nf'(z) (5)
where 7 is the step size (learning rate).
Plugging into the approximation:
fl@—nf'(z)) = f(z) —nf'(z)? (6)
Ensuring Descent:
Since 1 f’(x)? > 0, we guarantee:
f(@eg1) < f(a) (7
Thus, the function value always decreases, ensuring descent.

3.4 Visualization of Gradient Descent Using Taylor Approximation
Gradient Descent Using Taylor Approximation

| ~

X

— fix)=1x?

—4r First-order Approximation

20 -15 -10 -05 00 05 10 15 20

Figure 3: Visualization of Gradient Descent Using Taylor Approximation

The blue curve represents the function f(z) = %x? The red point is the current position x;, and the green
point is the updated position after applying gradient descent. The orange dashed line represents the first-order
Taylor approximation (tangent line), demonstrating how GD follows the gradient to minimize the function.

[9]-8

4 Newton’s Method: A Second-Order Optimization Approach

Newton’s Method is an optimization technique that uses second-order information (Hessian matrix or
second derivative) to accelerate convergence.

4.1 Second-Order Approximation using Taylor Series

Newton’s Method relies on a second-order Taylor expansion to approximate a function more accurately
than first-order methods like Gradient Descent. By incorporating the second derivative /' (), this approach
provides a better understanding of the function’s curvature, helping optimize step sizes. The higher-order
terms are ignored as ¢ is assumed to be small, making the approximation computationally efficient.

[Theorem 4.1:

Second-Order Taylor Approximation We approximate f(x + J) using Taylor expansion up to the
second order:

2
f(:r+5):f(x)+5f'(m)+%f"(x)+... (8)

Higher-order terms (92, etc.) are ignored since ¢ is assumed to be small.

L J

4.2 Finding the Optimal Step o

To ensure maximum decrease in the function f(x), Newton’s Method derives an optimal step size using
second-order information. By setting the derivative of the Taylor approximation to zero, we solve for J as:

Exercise 4.1: T

o maximize the decrease in f(x + ¢), we solve:

2
win (o +9) =min | (2) + 6f'(a) + 5 (2] ©)
Taking the derivative w.r.t.) and setting it to zero:
fay+ 22 g (10)
Solving for ¢:
f'(x)
0= — 11
f'(x) (4o

This is Newton’s optimal step size.

[9]-9

4.3 Newton’s Algorithm

Algorithm 4.1: Newton’s Method Update Rule

Using the Newton step 0 in an iterative update:

[(@)
T4l = T — F(z0) (12)
For multivariate cases (d > 1), the update rule is:
Ti41 = Tt — [V2f(l“t)]_lvf($t) (13)

where:
* Vf(x;) is the gradient.

» V2f(x;) is the Hessian matrix (second-order derivatives).

4.4 Advantages of Newton’s Method

» Faster Convergence: Quadratic convergence near optimal solutions.

* Better Step Size Selection: Uses second-derivative information instead of a manually chosen learning
rate.

¢ More Precise: Effective for convex functions with well-conditioned Hessians.

4.5 Limitations

* Computationally Expensive: Requires computing the Hessian and its inverse.

* Not Always Feasible: Hessian inversion is difficult for high-dimensional problems.

4.6 Comparison with Gradient Descent

Method Update Rule Convergence Rate

Gradient Descent xpy1 = xr — NV f(x¢) O(1/T) (for smooth & convex)

Newton’s Method | x41 = 24 — [V2f(24)] "'V f(2:) | O(logT) (quadratic convergence)

Table 1: Comparison of Gradient Descent and Newton’s Method

[9]-10

S Implemented a Project Using a Dataset for the Above Lecture

To complement the theoretical concepts discussed in the lecture, I have implemented a project that applies
Gradient Descent and Newton’s Method to a real-world dataset. This project provides a visual and practical
understanding of these optimization techniques.

5.1 Project Overview

The project involves:
* Implementing Gradient Descent and analyzing its convergence rate.
* Implementing Newton’s Method and observing its faster convergence.

* Comparing both methods to highlight their strengths and trade-offs.

5.2 Accessing the Project

The project has been implemented in a Jupyter Notebook. You can download and explore the implementation
using the link below:

Download Gradient Descent & Newton’s Method Project

By referring to this notebook, you can visualize the optimization process, understand the theoretical concepts
in action, and see how these methods perform on real-world data.
Next Lecture

The next lecture will cover the following topics:
(1) GD convergence analysis,

(i) SGD + Convergence guarantees,

(iii) Batched SGD,

(iv) Variants of GD.

References:

1. Lecture notes by Prof. Aadirupa Saha from course CS 412 Intro to ML Lec.9.pdf

[9]-11

https://colab.research.google.com/drive/1WAehA3K2TRPJZTuwnlbJYbA7PeupQnAb?authuser=1
https://cdn-uploads.piazza.com/paste/m53oyfstnlr6gy/bcdf893a7729f48a597f7f7ef7232f1c424afdf28ea6d519a95b493bcf3e77e2/Lec9.pdf

	Conversion Rates & Gradient Descent
	Convergence Rate of Gradient Descent
	Assumption

	Sublinear Convergence of Gradient Descent: O(1/T)
	Sub-Optimality Gap
	Real-World Application: Sub-Optimality Gap in Machine Learning Optimization
	Example: Finding T for a Given Sub-Optimality Gap
	Visual Representation for a Given Sub-Optimality Gap:
	Comparison of Convergence Rates

	Taylor Series Approximation
	Definition
	Example: f(x) = ax2

	Intuition: Why Gradient Descent (GD) Works
	Taylor Series Approximation
	Ignoring Higher-Order Terms
	How Gradient Descent Uses This Approximation
	Visualization of Gradient Descent Using Taylor Approximation

	Newton’s Method: A Second-Order Optimization Approach
	Second-Order Approximation using Taylor Series
	Finding the Optimal Step
	Newton’s Algorithm
	Advantages of Newton’s Method
	Limitations
	Comparison with Gradient Descent

	Implemented a Project Using a Dataset for the Above Lecture
	Project Overview
	Accessing the Project

