CS281B/Stat241B (Spring 2008) Statistical Learning Theory Lecture: 21

Online Learning: Halving Algorithm and Exponential Weights

Lecturer: Sasha Rakhlin Scribe: Ariel Kleiner

This lecture introduces online learning, in which we largely eschew statistical assumptions and instead
consider the behavior of individual sequences of observations and predictions.

See http://seed.ucsd.edu/ "mindreader for a demonstration.

In general, we will think of an algorithm as a “player” and a source of data as an “adversary.”

1 Halving Algorithm

Suppose that we (the player) have access to the predictions of N “experts.” Denote these predictions by

fl,tv"’va,t S {071}

Ateacht=1,...,T, we observe f1,,..., fn, and predict p, € {0,1}. We then observe y, € {0, 1} and suffer
loss 1(p; # yi). Suppose 3j such that f;; =y, for all t € [T7.

Halving Algorithm: predict p; = majority(C}), where C; = [N] and C; C [N] is defined below for ¢ > 1.

Theorem 1.1. If p; = majority(C;) and
Cir1=1{i€C: fir =y}

then we will make at most log, N mistakes.

PRrROOF. For every t at which there is a mistake, at least half of the experts in C}; are wrong and so

C
|Ca]| < %
It follows immediately that
(&1
|CT| < 27M

where M is the total number of mistakes. Additionally, because there is a perfect expert, |Cr| > 1. As a
result, recalling that C7 = [N],
N

and, rearranging,

M <log, N.



2 Online Learning: Halving Algorithm and Exponential Weights

2 Exponential Weights or Weighted Majority

We now change our assumptions about the game. For t = 1,...,T, the player observes

.fl,tv"'7fN,t S [071]

and predicts p; € [0,1]. The outcome y; € [0,1] is then revealed, and the player suffers loss I(ps,y:); the
experts suffer losses I(f;,4:),Vi. We assume that the loss function  : [0, 1] x [0,1] — [0, 1] is convex in its
first argument. Our goal is to achieve low regret Rr, defined as

T T
Rr =) Upeyr) = min > Ufieson)-
t=1 t=1
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Exponential Weights (or Weighted Majority) Algorithm: Maintain an (unnormalized) distribution
over [N] given by the weights

Wiy = e*WLz‘,t—1

and predict
N
D ie1 Wit fit
==
D1 Wit
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Note that the weights can be defined equivalently by letting w; ; = 1 and

—nl(f,
Wi 1 = Wie " (fi,e5ye)

Theorem 2.1. With an appropriate choice of 7,

Rr = O(VT).

In fact, with n = \/M%N,

T
RTS §IHN

PrROOF. Define W; = Zfil w;¢. Recall that, by definition, w; ; = 1,Vi and so W; = N. Now,

e N
In—+ — ire1 —InN
n W1 n;wj_ﬂ n
N
= anefnLi*TflnN
i=1
> ln( max e”Li’T> —InN
i=1,..,N

= -, minNLq;vT —InN. (1)
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Additionally,

N
Wir _ D im1 Wit41
N
Wi D i Wit

N —nl(f;
Zi:le n (ft,tvyt)wi’t

= In
Eij\i1 Ws ¢
N , , 2
< _nZizl lg\.’fz,h yt)wz,t + i
Zi:l Ws ¢ 8
,]72
< —nl(ps,ye) + 3

Inequality (2) holds because of Hoeflding’s inequality:

2/ 332
1nEesX§sEX+%

for any random variable X € [a,b] and any s € R. The role of X in (2) above is played by I(f;,v.), and
the role of s is played by —7. Inequality (3) follows from Jensen’s inequality because [ is convex in its first

argument.
Using (3), we find that

Wri1 Wria W Wa
In—— = In +In + - +In—
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T
< —ny Upoy) + T%.
t=1

Therefore, combining this inequality with the lower bound (1) obtained above, we have

2
-n minN Li,T —InN S —7’]LT + T%

i=1,...,

and so, rearranging,
In N
Ly < min Lp+—~ +712.
i=1,...,N n 8

Finally, optimizing over n (i.e., minimizing the last two terms with respect to 1), we obtain the desired

result.
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