
CS281B/Stat241B (Spring 2008) Statistical Learning Theory Lecture: 21

Online Learning: Halving Algorithm and Exponential Weights

Lecturer: Sasha Rakhlin Scribe: Ariel Kleiner

This lecture introduces online learning, in which we largely eschew statistical assumptions and instead
consider the behavior of individual sequences of observations and predictions.
See http://seed.ucsd.edu/~mindreader for a demonstration.
In general, we will think of an algorithm as a “player” and a source of data as an “adversary.”

1 Halving Algorithm

Suppose that we (the player) have access to the predictions of N “experts.” Denote these predictions by

f1,t, . . . , fN,t ∈ {0, 1}.

At each t = 1, . . . , T , we observe f1,t, . . . , fN,t and predict pt ∈ {0, 1}. We then observe yt ∈ {0, 1} and suffer
loss 1(pt 6= yt). Suppose ∃j such that fj,t = yt for all t ∈ [T ].

Halving Algorithm: predict pt = majority(Ct), where C1 = [N ] and Ct ⊆ [N ] is defined below for t > 1.

Theorem 1.1. If pt = majority(Ct) and

Ct+1 = {i ∈ Ct : fi,t = yt}

then we will make at most log2 N mistakes.

Proof. For every t at which there is a mistake, at least half of the experts in Ct are wrong and so

|Ct+1| ≤
|Ct|
2

.

It follows immediately that

|CT | ≤
|C1|
2M

where M is the total number of mistakes. Additionally, because there is a perfect expert, |CT | ≥ 1. As a
result, recalling that C1 = [N ],

1 ≤ N

2M

and, rearranging,

M ≤ log2 N.
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2 Exponential Weights or Weighted Majority

We now change our assumptions about the game. For t = 1, . . . , T , the player observes

f1,t, . . . , fN,t ∈ [0, 1]

and predicts pt ∈ [0, 1]. The outcome yt ∈ [0, 1] is then revealed, and the player suffers loss l(pt, yt); the
experts suffer losses l(fi,t, yt),∀i. We assume that the loss function l : [0, 1] × [0, 1] → [0, 1] is convex in its
first argument. Our goal is to achieve low regret RT , defined as

RT =
T∑

t=1

l(pt, yt)︸ ︷︷ ︸
LT

− min
i∈[N ]

T∑
t=1

l(fi,t, yt)︸ ︷︷ ︸
Li,T

.

Exponential Weights (or Weighted Majority) Algorithm: Maintain an (unnormalized) distribution
over [N ] given by the weights

wi,t = e−ηLi,t−1

and predict

pt =
∑N

i=1 wi,tfi,t∑N
i=1 wi,t

.

Note that the weights can be defined equivalently by letting wi,1 = 1 and

wi,t+1 = wi,te
−ηl(fi,t,yt)

Theorem 2.1. With an appropriate choice of η,

RT = O(
√

T ).

In fact, with η =
√

8 ln N
T ,

RT ≤
√

T

2
lnN.

Proof. Define Wt =
∑N

i=1 wi,t. Recall that, by definition, wi,1 = 1,∀i and so W1 = N . Now,

ln
WT+1

W1
= ln

N∑
i=1

wi,T+1 − lnN

= ln
N∑

i=1

e−ηLi,T − lnN

≥ ln
(

max
i=1,...,N

e−ηLi,T

)
− lnN

= −η min
i=1,...,N

Li,T − lnN. (1)
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Additionally,

ln
Wt+1

Wt
= ln

∑N
i=1 wi,t+1∑N

i=1 wi,t

= ln
∑N

i=1 e−ηl(fi,t,yt)wi,t∑N
i=1 wi,t

≤ −η

∑N
i=1 l(fi,t, yt)wi,t∑N

i=1 wi,t

+
η2

8
(2)

≤ −ηl(pt, yt) +
η2

8
. (3)

Inequality (2) holds because of Hoeffding’s inequality:

ln EesX ≤ sEX +
s2(a− b)2

8

for any random variable X ∈ [a, b] and any s ∈ R. The role of X in (2) above is played by l(fi,t, yt), and
the role of s is played by −η. Inequality (3) follows from Jensen’s inequality because l is convex in its first
argument.

Using (3), we find that

ln
WT+1

W1
= ln

WT+1

WT
+ ln

WT

WT−1
+ · · ·+ ln

W2

W1

≤ −η

T∑
t=1

l(pt, yt) + T
η2

8
.

Therefore, combining this inequality with the lower bound (1) obtained above, we have

−η min
i=1,...,N

Li,T − lnN ≤ −ηLT + T
η2

8

and so, rearranging,

LT ≤ min
i=1,...,N

Li,T +
lnN

η
+ T

η

8
.

Finally, optimizing over η (i.e., minimizing the last two terms with respect to η), we obtain the desired
result.


