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Overview

In the last lecture, we covered the following main topics:

1. Boosting

2. Ada Boost

3. Mistake Bounds

This lecture focuses on:

1. Linear Algebra Preliminaries

2. Orthonormal Basis

3. Principal Component Analysis (PCA)

1 Linear Algebra Preliminaries (Required)

1.1 Definition: Vector Space

Vector Space: A vector space consists of:

• a set V

• a scalar field Q (usually R or C)

• and two operations: vector addition + and scalar multiplication ·

These must satisfy the following properties:

1. For any pair of elements x, y ∈ V , the sum x+ y ∈ V (closure under addition).

2. For any x ∈ V and scalar α ∈ Q, we have α · x ∈ V (closure under scalar multiplication).

3. There exists a zero vector 0 ∈ V such that x+ 0 = x for any x ∈ V .

4. For every x ∈ V , there exists an additive inverse −x ∈ V such that x+ (−x) = 0.

5. The addition operation + is:
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• Commutative: x+ y = y + x

• Associative: (x+ y) + z = x+ (y + z)

6. Scalar multiplication is associative: for any scalars α, β ∈ Q and x ∈ V ,

α(β · x) = (αβ) · x

7. Scalar and vector sums are distributive:

• (α+ β) · x = α · x+ β · x
• α · (x+ y) = α · x+ α · y

Example: Vector Spaces

• Rn: The set of all n-dimensional real-valued vectors. Closed under addition and scalar multiplication.

• Rm×n: The set of all m× n real matrices. Matrix addition and scalar multiplication satisfy all vector
space axioms.

• Pn: The set of all polynomials of degree at most n. Closed under polynomial addition and scalar
multiplication.

• F = {f : R → R}: The set of all real-valued functions defined onR. Addition and scalar multiplication
of functions preserve closure.

1.2 Definition: Subspace of a Vector Space

A subspace of a vector space V is any subset W ⊆ V that is itself a vector space under the same operations as
V .

Examples of Vector Spaces

• Rn: Set of all n-dimensional real vectors

• Rm×n: Set of all real m× n matrices

• Pn: Set of all polynomials of degree at most n

• F : Set of all real (or complex) valued functions, i.e., {f : R → R}

Example: Subspaces

• The set of all vectors in R3 of the form (x, y, 0) is a subspace of R3. It is closed under addition and
scalar multiplication.

• The set of all 3× 3 symmetric matrices forms a subspace of R3×3.

• The set W = {x ∈ R3 : x1 + x2 + x3 = 0} is a subspace of R3. It contains the zero vector and is
closed under linear combinations.
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1.3 Definition: Linear Independence

A set of m vectors v1, v2, . . . , vm is said to be linearly dependent if there exist scalars α1, α2, . . . , αm, not
all zero, such that:

m∑
i=1

αivi = 0

Otherwise, the set is called linearly independent.

Example: Columns of the Identity Matrix

The columns of the n× n identity matrix are linearly independent:

I =


1 0 · · · 0
0 1 · · · 0
...

... . . . ...
0 0 · · · 1


These columns can be written as:

e1 =


1
0
...
0

 , e2 =


0
1
...
0

 , . . . en =


0
0
...
1


These are called the standard unit vectors in Rn, and they are orthogonal and linearly independent.

To test any set of vectors v1, . . . , vn for linear independence:

• Form the matrix A = [v1 v2 . . . vn]

• Solve the homogeneous system Ac = 0

• If the only solution is c = 0, then the set is linearly independent

• If n > m (more vectors than dimensions), the set must be linearly dependent

Theorem: A set of n vectors in Rm must be linearly dependent if n > m.

1.4 Definition: Span of a Set of Vectors

Let v1, v2, . . . , vm be a set of vectors in a vector space V . Then the span of this set is defined as the set of all
possible linear combinations:

Span(v1, . . . , vm) =

{
y ∈ V

∣∣∣∣∣ y =

m∑
i=1

αivi for some αi ∈ Q

}
Let v1, v2, . . . , vm ∈ V . Then:

Span(v1, . . . , vm) =

{
y

∣∣∣∣∣ y =
m∑
i=1

αivi, αi ∈ Q

}
This set consists of all linear combinations of v1, . . . , vm.
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Example: Span

Let v1 =
(
1
0

)
and v2 =

(
0
1

)
in R2. Then:

Span(v1, v2) = {α1v1 + α2v2 | α1, α2 ∈ R}

=

{(
α1

α2

) ∣∣∣∣ α1, α2 ∈ R
}

= R2

This means the vectors v1 and v2 span the entire R2 space.

Alternate example: Let v1 =
(
1
2

)
. Then:

Span(v1) =
{
α

(
1
2

) ∣∣∣∣ α ∈ R
}

This is a line through the origin in the direction of v1, a 1D subspace of R2.

1.5 Definition: Basis of a Vector Space

A basis of a vector space V is a set of linearly independent vectors a1, . . . , an ∈ V such that:

V = Span(a1, . . . , an)

Examples:

1. The standard basis for Rn is {e1, . . . , en}, where ei is the unit vector with a 1 in the ith coordinate:

ei = (0, . . . , 1, . . . , 0)T , i ∈ [n]

2. A basis for R3×2 consists of 6 matrices: 1 0
0 0
0 0

 ,

 0 1
0 0
0 0

 ,

 0 0
1 0
0 0

 ,

 0 0
0 1
0 0

 ,

 0 0
0 0
1 0

 ,

 0 0
0 0
0 1


3. A basis of R3 is: 

1
0
0

 ,

0
1
0

 ,

0
0
1


Note: Basis and Coordinates

If x is a vector and S ⊆ V is a subspace of dimension n, then for any basis b1, . . . , bn ∈ S, if:

⟨x, bi⟩ > 0, ∀i ∈ [n],

then x is aligned (non-orthogonal) to all vectors in S, and the representation is unique.
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1.6 Definition: Orthonormal Basis

A basis {v1, . . . , vn} of a vector space V is called an orthonormal basis if:

• ⟨vi, vj⟩ = 0 ∀i ̸= j (vectors are orthogonal)

• ⟨vi, vi⟩ = 1 ∀i (unit norm)

Example: Two orthonormal bases for R3 could be:
1
0
0

 ,

0
1
0

 ,

0
0
1

 and




1√
2
1√
2

0

 ,


1√
2

− 1√
2

0

 ,

0
0
1




1.7 Algorithm: Gram–Schmidt Orthonormalization

A method to convert a set of linearly independent vectors a1, . . . , am ∈ Rn into an orthonormal basis.

Input:

Linearly independent vectors a1, . . . , am ∈ Rn

Initialize:

v1 =
a1

∥a1∥2

For i = 2 to m:

v′i = ai −
i−1∑
j=1

⟨ai, vj⟩vj ⇒ vi =
v′i

∥v′i∥2

Output:

Orthonormal vectors v1, . . . , vm

Exercise:

1. Can you show that v1, . . . , vm are orthogonal to each other?

2. Do v1, . . . , vm form an orthonormal basis for the span of {a1, . . . , am}?
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Theorem 1.1: Summary of Key Vector Space Properties

A vector space V over a field Q must satisfy the following:

1. Closure under vector addition and scalar multiplication

2. Existence of zero vector and additive inverses

3. Associativity and commutativity of addition

4. Distributive properties of scalar multiplication over vectors and scalars

5. Associativity of scalar multiplication

In addition:

• A basis spans V and is linearly independent.

• An orthonormal basis satisfies:

⟨vi, vj⟩ = 0 for i ̸= j, and ⟨vi, vi⟩ = 1

• Gram–Schmidt converts any linearly independent set into an orthonormal basis for its span.

Exercise 1.1: Conceptual Check

1. Prove that a set of vectors that is both spanning and linearly independent forms a basis.

2. Give an example of a set of vectors in R3 that is linearly dependent but spans a 2D subspace.

3. Use Gram–Schmidt to convert the set
{(

1
1

)
,

(
1
0

)}
into an orthonormal basis.

4. Explain why orthonormal bases simplify projection and coordinate computations.

2 Principal Component Analysis (PCA)

2.1 Motivation and Problem Setup

Principal Component Analysis (PCA) is a technique for dimensionality reduction of data instances. It is an
unsupervised learning algorithm.

Consider a given dataset:
D = {x1, x2, . . . , xn} where xi ∈ RD

Here:

• D is the dataset

• D is the dimensionality of the data

• D is typically very large
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Representing or transmitting such high-dimensional data:

• Requires significant memory, time, and bandwidth

• Is computationally expensive

Therefore, we need a technique to reduce the dimensionality D, ideally:

• Retaining the most important features of the data

• Reducing redundancy and noise in the representation

2.2 Applications of PCA

Principal Component Analysis (PCA) is widely used in unsupervised learning and data preprocessing. Its
applications include:

• Dimensionality Reduction: Reducing the number of features while preserving most of the data
variance. Often used as a preprocessing step before supervised learning models.

• Noise Reduction: PCA eliminates components that capture very low variance — often attributable to
noise — thereby improving signal quality.

• Data Visualization: High-dimensional datasets (e.g., D > 100) can be projected into 2D or 3D for
visualization using the top principal components.

• Image Compression: In computer vision, PCA is used to compress images by storing only the most
significant basis vectors and their projections.

• Feature Decorrelation: PCA produces orthogonal (uncorrelated) components, which can improve
learning performance in models sensitive to correlated features.

• Genomics and Signal Processing: PCA is used to analyze expression patterns in gene data and in
filtering signals for noise separation.

These practical applications motivate the need for a mathematically principled way to project data into lower
dimensions with minimal information loss.

Figure 1: PCA projects high-dimensional data (e.g., 2D) onto a lower-dimensional subspace (e.g., 1D) by
finding the direction of maximum variance.
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2.3 Step-by-Step Derivation of PCA

Let us assume that D = {x1, . . . , xn} ⊂ RD, and that we have an orthonormal basis B = {u1, . . . , uD}
such that:

ui ∈ RD, ∥ui∥ = 1, ⟨ui, uj⟩ = 0 for i ̸= j

Since B is a complete basis for RD, any datapoint xn ∈ RD can be expressed as:

xn =

D∑
i=1

αniui, where αni = ⟨xn, ui⟩

Each coefficient αni is the projection of xn along the basis direction ui. This uses D numbers to represent
each point.

Theorem 2.1: PCA Representation via Orthonormal Basis

Any datapoint xn ∈ RD can be exactly represented using an orthonormal basis {u1, . . . , uD} as:

xn =

D∑
i=1

αniui where αni = ⟨xn, ui⟩

To reduce dimensionality, PCA approximates xn using only the top M < D components:

xn ≈
M∑
j=1

βnjuj

This provides a compact, noise-reduced representation in an M -dimensional subspace.

Exercise 2.1: Understanding PCA Projections

1. Given an orthonormal basis {u1, u2, u3}, compute the projection coefficients αni = ⟨xn, ui⟩
for a given point xn.

2. If xn ∈ R5 is projected using only the first 2 basis vectors, how many components are ignored?
What does this imply geometrically?

3. Why is the orthonormality of the basis crucial in PCA? What would happen if the basis vectors
were not orthogonal?

4. Can PCA increase accuracy in a supervised learning task? Why or why not?

2.4 M-Component PCA

Our goal is to approximate every xn ∈ RD using a representation involving only a subset M < D of the
basis vectors, i.e., a projection of xn onto a lower-dimensional subspace.
Let us assume that each datapoint xn can be approximated using only the first M directions:
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xn ≈
M∑
j=1

βnjuj +

D∑
j=M+1

cnjuj

Where: - βnj : coefficients capturing meaningful projection (learned) - cnj : treated as residuals (ignored in
low-dimensional representation)

Goal: Find the {uj}Mj=1 and {βnj}Mj=1 for all n ∈ [N ] such that each xn is well-approximated.

2.5 Minimum-Error Formulation of PCA

Let us analyze the average ℓ2-approximation error defined as:

J =
1

N

N∑
n=1

∥xn − x̃n∥2

Our goal is to minimize J over:

{zni}, {bj}Dj=1, {uj}Dj=1, i ∈ [M ], n ∈ [N ]

—

Step 1: Minimizing over zni

We take the derivative of J with respect to zni and set it to zero:

∇zniJ = 0 ∀ i, n

⇒ 1

N

N∑
n=1

(xn − x̃n)
T dx̃n
dzni

= 0

Note that:

xn =
D∑
i=1

αniui, x̃n =
M∑
i=1

zniui +
D∑

j=M+1

bjuj

So the gradient condition becomes:〈
D∑
i=1

αniui −

 M∑
i=1

zniui +

D∑
j=M+1

bjuj

 , ui

〉
= 0 (for all i, n)

Using orthonormality of ui, we get:

αni − zni = 0 ⇒ zni = αni = ⟨xn, ui⟩

—
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Step 2: Minimizing over bj

We similarly take the derivative of J with respect to bj , and get:

∇bjJ = 0 ⇒ bj = x̄Tuj

Where x̄ is the mean of the dataset:

x̄ =
1

N

N∑
n=1

xn

Substitute Back to Get Residual Error

Substituting values zni = αni, bj = x̄Tuj , we have:

xn − x̃n =

D∑
j=M+1

⟨xn − x̄, uj⟩uj

Hence the reconstruction error becomes:

J =
1

N

N∑
n=1

∥xn − x̃n∥2 =
1

N

N∑
n=1

(xn − x̄)T (xn − x̄)

=
1

N

N∑
n=1

D∑
j=M+1

(
(xn − x̄)Tuj

)2

=
D∑

j=M+1

uTj Suj where S =
1

N

N∑
n=1

(xn − x̄)(xn − x̄)T

Here, S is the average data covariance matrix.

Conclusion

We have shown that the reconstruction error for approximating xn using only the top M directions of an
orthonormal basis is given by:

J =
D∑

j=M+1

(
1

N

N∑
n=1

(
uTj (xn − x̄)

)2)
Using the fact that:

1

N

N∑
n=1

(
uTj (xn − x̄)

)2
= uTj Suj where S =

1

N

N∑
n=1

(xn − x̄)(xn − x̄)T

we finally arrive at:
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J =
D∑

j=M+1

uTj Suj

where S is the empirical data covariance matrix.

Theorem 2.2: Minimum-Error PCA Objective

Let S be the data covariance matrix:

S =
1

N

N∑
n=1

(xn − x̄)(xn − x̄)T

Then the average reconstruction error from projecting each xn onto the top M components is:

J =
D∑

j=M+1

uTj Suj

To minimize this error, PCA chooses {u1, . . . , uM} as the top M eigenvectors of S, corresponding to
the largest eigenvalues.
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