CS 412 — Introduction to Machine Learning (UIC)

April 01, 2025

Lecture 19

Instructor: Aadirupa Saha Scribe(s): Jiachen Tao/ Aksun Agnihotri

[This draft is not fully proofread. Please email any typos/errors to the instructor or directly edit the latex file.]

Overview

In the last lecture, we covered the following main topics:

- 1. Boosting
- 2. Ada Boost
- 3. Mistake Bounds

This lecture focuses on:

- 1. Linear Algebra Preliminaries
- 2. Orthonormal Basis
- 3. Principal Component Analysis (PCA)

1 Linear Algebra Preliminaries (Required)

1.1 Definition: Vector Space

Vector Space: A vector space consists of:

- a set \mathcal{V}
- a scalar field \mathbb{Q} (usually \mathbb{R} or \mathbb{C})
- and two operations: vector addition + and scalar multiplication \cdot

These must satisfy the following properties:

- **1.** For any pair of elements $x, y \in \mathcal{V}$, the sum $x + y \in \mathcal{V}$ (closure under addition).
- **2.** For any $x \in \mathcal{V}$ and scalar $\alpha \in \mathbb{Q}$, we have $\alpha \cdot x \in \mathcal{V}$ (closure under scalar multiplication).
- **3.** There exists a zero vector $0 \in \mathcal{V}$ such that x + 0 = x for any $x \in \mathcal{V}$.
- **4.** For every $x \in \mathcal{V}$, there exists an additive inverse $-x \in \mathcal{V}$ such that x + (-x) = 0.
- **5.** The addition operation + is:

• Commutative: x + y = y + x

• **Associative:** (x + y) + z = x + (y + z)

6. Scalar multiplication is associative: for any scalars $\alpha, \beta \in \mathbb{Q}$ and $x \in \mathcal{V}$,

$$\alpha(\beta \cdot x) = (\alpha\beta) \cdot x$$

7. Scalar and vector sums are distributive:

•
$$(\alpha + \beta) \cdot x = \alpha \cdot x + \beta \cdot x$$

•
$$\alpha \cdot (x+y) = \alpha \cdot x + \alpha \cdot y$$

Example: Vector Spaces

- \mathbb{R}^n : The set of all n-dimensional real-valued vectors. Closed under addition and scalar multiplication.
- $\mathbb{R}^{m \times n}$: The set of all $m \times n$ real matrices. Matrix addition and scalar multiplication satisfy all vector space axioms.
- P_n : The set of all polynomials of degree at most n. Closed under polynomial addition and scalar multiplication.
- $\mathcal{F} = \{f : \mathbb{R} \to \mathbb{R}\}$: The set of all real-valued functions defined on \mathbb{R} . Addition and scalar multiplication of functions preserve closure.

1.2 Definition: Subspace of a Vector Space

A subspace of a vector space V is any subset $W \subseteq V$ that is itself a vector space under the same operations as V.

Examples of Vector Spaces

- \mathbb{R}^n : Set of all *n*-dimensional real vectors
- $\mathbb{R}^{m \times n}$: Set of all real $m \times n$ matrices
- P_n : Set of all polynomials of degree at most n
- \mathcal{F} : Set of all real (or complex) valued functions, i.e., $\{f: \mathbb{R} \to \mathbb{R}\}$

Example: Subspaces

- The set of all vectors in \mathbb{R}^3 of the form (x, y, 0) is a subspace of \mathbb{R}^3 . It is closed under addition and scalar multiplication.
- The set of all 3×3 symmetric matrices forms a subspace of $\mathbb{R}^{3\times 3}$.
- The set $W = \{x \in \mathbb{R}^3 : x_1 + x_2 + x_3 = 0\}$ is a subspace of \mathbb{R}^3 . It contains the zero vector and is closed under linear combinations.

1.3 Definition: Linear Independence

A set of m vectors v_1, v_2, \ldots, v_m is said to be **linearly dependent** if there exist scalars $\alpha_1, \alpha_2, \ldots, \alpha_m$, not all zero, such that:

$$\sum_{i=1}^{m} \alpha_i v_i = 0$$

Otherwise, the set is called **linearly independent**.

Example: Columns of the Identity Matrix

The columns of the $n \times n$ identity matrix are linearly independent:

$$I = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}$$

These columns can be written as:

$$e_1 = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \quad e_2 = \begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix}, \quad \dots \quad e_n = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}$$

These are called the standard unit vectors in \mathbb{R}^n , and they are orthogonal and linearly independent.

To test any set of vectors v_1, \ldots, v_n for linear independence:

- Form the matrix $A = [v_1 v_2 \dots v_n]$
- Solve the homogeneous system Ac = 0
- If the only solution is c = 0, then the set is linearly independent
- If n > m (more vectors than dimensions), the set must be linearly dependent

Theorem: A set of n vectors in \mathbb{R}^m must be linearly dependent if n > m.

1.4 Definition: Span of a Set of Vectors

Let v_1, v_2, \dots, v_m be a set of vectors in a vector space \mathcal{V} . Then the **span** of this set is defined as the set of all possible linear combinations:

$$\operatorname{Span}(v_1, \dots, v_m) = \left\{ y \in \mathcal{V} \mid y = \sum_{i=1}^m \alpha_i v_i \text{ for some } \alpha_i \in \mathbb{Q} \right\}$$

Let $v_1, v_2, \ldots, v_m \in \mathcal{V}$. Then:

$$\mathrm{Span}(v_1,\ldots,v_m) = \left\{ y \mid y = \sum_{i=1}^m \alpha_i v_i, \ \alpha_i \in \mathbb{Q} \right\}$$

This set consists of all linear combinations of v_1, \ldots, v_m .

Example: Span

Let
$$v_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 and $v_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ in \mathbb{R}^2 . Then:

$$Span(v_1, v_2) = \{\alpha_1 v_1 + \alpha_2 v_2 \mid \alpha_1, \alpha_2 \in \mathbb{R}\}\$$

$$= \left\{ \begin{pmatrix} \alpha_1 \\ \alpha_2 \end{pmatrix} \mid \alpha_1, \alpha_2 \in \mathbb{R} \right\} = \mathbb{R}^2$$

This means the vectors v_1 and v_2 span the entire \mathbb{R}^2 space.

Alternate example: Let $v_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$. Then:

$$\operatorname{Span}(v_1) = \left\{ \alpha \begin{pmatrix} 1 \\ 2 \end{pmatrix} \mid \alpha \in \mathbb{R} \right\}$$

This is a line through the origin in the direction of v_1 , a 1D subspace of \mathbb{R}^2 .

1.5 Definition: Basis of a Vector Space

A **basis** of a vector space \mathcal{V} is a set of linearly independent vectors $a_1, \ldots, a_n \in \mathcal{V}$ such that:

$$\mathcal{V} = \operatorname{Span}(a_1, \dots, a_n)$$

Examples:

1. The standard basis for \mathbb{R}^n is $\{e_1, \dots, e_n\}$, where e_i is the unit vector with a 1 in the i^{th} coordinate:

$$e_i = (0, \dots, 1, \dots, 0)^T, \quad i \in [n]$$

2. A basis for $\mathbb{R}^{3\times 2}$ consists of 6 matrices:

$$\begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 1 \end{bmatrix}$$

3. A basis of \mathbb{R}^3 is:

$$\left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\}$$

Note: Basis and Coordinates

If x is a vector and $S \subseteq V$ is a subspace of dimension n, then for any basis $b_1, \ldots, b_n \in S$, if:

$$\langle x, b_i \rangle > 0, \quad \forall i \in [n],$$

then x is aligned (non-orthogonal) to all vectors in S, and the representation is unique.

1.6 Definition: Orthonormal Basis

A basis $\{v_1, \ldots, v_n\}$ of a vector space \mathcal{V} is called an **orthonormal basis** if:

- $\langle v_i, v_j \rangle = 0 \quad \forall i \neq j \text{ (vectors are orthogonal)}$
- $\langle v_i, v_i \rangle = 1 \quad \forall i \text{ (unit norm)}$

Example: Two orthonormal bases for \mathbb{R}^3 could be:

$$\left\{ \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\1 \end{pmatrix} \right\} \quad \text{and} \quad \left\{ \begin{pmatrix} \frac{1}{\sqrt{2}}\\\frac{1}{\sqrt{2}}\\0 \end{pmatrix}, \begin{pmatrix} \frac{1}{\sqrt{2}}\\-\frac{1}{\sqrt{2}}\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\1 \end{pmatrix} \right\}$$

1.7 Algorithm: Gram-Schmidt Orthonormalization

A method to convert a set of linearly independent vectors $a_1, \ldots, a_m \in \mathbb{R}^n$ into an orthonormal basis.

Input:

Linearly independent vectors $a_1, \ldots, a_m \in \mathbb{R}^n$

Initialize:

$$v_1 = \frac{a_1}{\|a_1\|_2}$$

For i=2 to m:

$$v_i' = a_i - \sum_{j=1}^{i-1} \langle a_i, v_j \rangle v_j \quad \Rightarrow \quad v_i = \frac{v_i'}{\|v_i'\|_2}$$

Output:

Orthonormal vectors v_1, \ldots, v_m

Exercise:

- 1. Can you show that v_1, \ldots, v_m are orthogonal to each other?
- 2. Do v_1, \ldots, v_m form an orthonormal basis for the span of $\{a_1, \ldots, a_m\}$?

Theorem 1.1: Summary of Key Vector Space Properties

A vector space $\mathcal V$ over a field $\mathbb Q$ must satisfy the following:

- 1. Closure under vector addition and scalar multiplication
- 2. Existence of zero vector and additive inverses
- 3. Associativity and commutativity of addition
- 4. Distributive properties of scalar multiplication over vectors and scalars
- 5. Associativity of scalar multiplication

In addition:

- A basis spans V and is linearly independent.
- An orthonormal basis satisfies:

$$\langle v_i, v_j \rangle = 0 \text{ for } i \neq j, \text{ and } \langle v_i, v_i \rangle = 1$$

• Gram-Schmidt converts any linearly independent set into an orthonormal basis for its span.

Exercise 1.1: Conceptual Check

- 1. Prove that a set of vectors that is both spanning and linearly independent forms a basis.
- 2. Give an example of a set of vectors in \mathbb{R}^3 that is linearly dependent but spans a 2D subspace.
- 3. Use Gram–Schmidt to convert the set $\left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right\}$ into an orthonormal basis.
- 4. Explain why orthonormal bases simplify projection and coordinate computations.

2 Principal Component Analysis (PCA)

2.1 Motivation and Problem Setup

Principal Component Analysis (PCA) is a technique for **dimensionality reduction** of data instances. It is an **unsupervised learning algorithm**.

Consider a given dataset:

$$\mathcal{D} = \{x_1, x_2, \dots, x_n\}$$
 where $x_i \in \mathbb{R}^D$

Here:

- \mathcal{D} is the dataset
- D is the dimensionality of the data
- D is typically very large

Representing or transmitting such high-dimensional data:

- Requires significant memory, time, and bandwidth
- Is computationally expensive

Therefore, we need a technique to **reduce the dimensionality** D, ideally:

- Retaining the most important features of the data
- Reducing redundancy and noise in the representation

2.2 Applications of PCA

Principal Component Analysis (PCA) is widely used in unsupervised learning and data preprocessing. Its applications include:

- **Dimensionality Reduction:** Reducing the number of features while preserving most of the data variance. Often used as a preprocessing step before supervised learning models.
- **Noise Reduction:** PCA eliminates components that capture very low variance often attributable to noise thereby improving signal quality.
- Data Visualization: High-dimensional datasets (e.g., D > 100) can be projected into 2D or 3D for visualization using the top principal components.
- **Image Compression:** In computer vision, PCA is used to compress images by storing only the most significant basis vectors and their projections.
- **Feature Decorrelation:** PCA produces orthogonal (uncorrelated) components, which can improve learning performance in models sensitive to correlated features.
- **Genomics and Signal Processing:** PCA is used to analyze expression patterns in gene data and in filtering signals for noise separation.

These practical applications motivate the need for a mathematically principled way to project data into lower dimensions with minimal information loss.

Figure 1: PCA projects high-dimensional data (e.g., 2D) onto a lower-dimensional subspace (e.g., 1D) by finding the direction of maximum variance.

2.3 Step-by-Step Derivation of PCA

Let us assume that $\mathcal{D} = \{x_1, \dots, x_n\} \subset \mathbb{R}^D$, and that we have an orthonormal basis $B = \{u_1, \dots, u_D\}$ such that:

$$u_i \in \mathbb{R}^D$$
, $||u_i|| = 1$, $\langle u_i, u_i \rangle = 0$ for $i \neq j$

Since B is a complete basis for \mathbb{R}^D , any datapoint $x_n \in \mathbb{R}^D$ can be expressed as:

$$x_n = \sum_{i=1}^{D} \alpha_{ni} u_i$$
, where $\alpha_{ni} = \langle x_n, u_i \rangle$

Each coefficient α_{ni} is the projection of x_n along the basis direction u_i . This uses D numbers to represent each point.

Theorem 2.1: PCA Representation via Orthonormal Basis

Any datapoint $x_n \in \mathbb{R}^D$ can be exactly represented using an orthonormal basis $\{u_1, \dots, u_D\}$ as:

$$x_n = \sum_{i=1}^{D} \alpha_{ni} u_i$$
 where $\alpha_{ni} = \langle x_n, u_i \rangle$

To reduce dimensionality, PCA approximates x_n using only the top M < D components:

$$x_n \approx \sum_{j=1}^{M} \beta_{nj} u_j$$

This provides a compact, noise-reduced representation in an M-dimensional subspace.

Exercise 2.1: Understanding PCA Projections

- 1. Given an orthonormal basis $\{u_1, u_2, u_3\}$, compute the projection coefficients $\alpha_{ni} = \langle x_n, u_i \rangle$ for a given point x_n .
- 2. If $x_n \in \mathbb{R}^5$ is projected using only the first 2 basis vectors, how many components are ignored? What does this imply geometrically?
- 3. Why is the orthonormality of the basis crucial in PCA? What would happen if the basis vectors were not orthogonal?
- 4. Can PCA increase accuracy in a supervised learning task? Why or why not?

2.4 M-Component PCA

Our goal is to approximate every $x_n \in \mathbb{R}^D$ using a **representation involving only a subset** M < D of the basis vectors, i.e., a projection of x_n onto a lower-dimensional subspace.

Let us assume that each datapoint x_n can be approximated using only the first M directions:

$$x_n \approx \sum_{j=1}^{M} \beta_{nj} u_j + \sum_{j=M+1}^{D} c_{nj} u_j$$

Where: - β_{nj} : coefficients capturing meaningful projection (learned) - c_{nj} : treated as residuals (ignored in low-dimensional representation)

Goal: Find the $\{u_j\}_{j=1}^M$ and $\{\beta_{nj}\}_{j=1}^M$ for all $n \in [N]$ such that each x_n is well-approximated.

2.5 Minimum-Error Formulation of PCA

Let us analyze the average ℓ_2 -approximation error defined as:

$$\mathcal{J} = \frac{1}{N} \sum_{n=1}^{N} ||x_n - \tilde{x}_n||^2$$

Our goal is to minimize \mathcal{J} over:

$$\{z_{ni}\}, \{b_j\}_{j=1}^D, \{u_j\}_{j=1}^D, i \in [M], n \in [N]$$

Step 1: Minimizing over z_{ni}

We take the derivative of \mathcal{J} with respect to z_{ni} and set it to zero:

$$\nabla_{z_{ni}} \mathcal{J} = 0 \quad \forall i, n$$

$$\Rightarrow \frac{1}{N} \sum_{n=1}^{N} (x_n - \tilde{x}_n)^T \frac{d\tilde{x}_n}{dz_{ni}} = 0$$

Note that:

$$x_n = \sum_{i=1}^{D} \alpha_{ni} u_i, \quad \tilde{x}_n = \sum_{i=1}^{M} z_{ni} u_i + \sum_{i=M+1}^{D} b_j u_j$$

So the gradient condition becomes:

$$\left\langle \sum_{i=1}^{D} \alpha_{ni} u_i - \left(\sum_{i=1}^{M} z_{ni} u_i + \sum_{j=M+1}^{D} b_j u_j \right), u_i \right\rangle = 0 \quad \text{(for all } i, n)$$

Using orthonormality of u_i , we get:

$$\alpha_{ni} - z_{ni} = 0 \quad \Rightarrow \quad z_{ni} = \alpha_{ni} = \langle x_n, u_i \rangle$$

Step 2: Minimizing over b_i

We similarly take the derivative of \mathcal{J} with respect to b_i , and get:

$$\nabla_{b_i} \mathcal{J} = 0 \quad \Rightarrow \quad b_j = \bar{x}^T u_j$$

Where \bar{x} is the mean of the dataset:

$$\bar{x} = \frac{1}{N} \sum_{n=1}^{N} x_n$$

Substitute Back to Get Residual Error

Substituting values $z_{ni} = \alpha_{ni}, b_j = \bar{x}^T u_j$, we have:

$$x_n - \tilde{x}_n = \sum_{j=M+1}^{D} \langle x_n - \bar{x}, u_j \rangle u_j$$

Hence the reconstruction error becomes:

$$\mathcal{J} = \frac{1}{N} \sum_{n=1}^{N} \|x_n - \tilde{x}_n\|^2 = \frac{1}{N} \sum_{n=1}^{N} (x_n - \bar{x})^T (x_n - \bar{x})$$

$$= \frac{1}{N} \sum_{n=1}^{N} \sum_{j=M+1}^{D} ((x_n - \bar{x})^T u_j)^2$$

$$= \sum_{j=M+1}^{D} u_j^T S u_j \quad \text{where} \quad S = \frac{1}{N} \sum_{n=1}^{N} (x_n - \bar{x})(x_n - \bar{x})^T$$

Here, S is the average data covariance matrix.

Conclusion

We have shown that the reconstruction error for approximating x_n using only the top M directions of an orthonormal basis is given by:

$$\mathcal{J} = \sum_{j=M+1}^{D} \left(\frac{1}{N} \sum_{n=1}^{N} \left(u_j^T (x_n - \bar{x}) \right)^2 \right)$$

Using the fact that:

$$\frac{1}{N} \sum_{n=1}^{N} (u_j^T (x_n - \bar{x}))^2 = u_j^T S u_j \quad \text{where} \quad S = \frac{1}{N} \sum_{n=1}^{N} (x_n - \bar{x})(x_n - \bar{x})^T$$

we finally arrive at:

$$\mathcal{J} = \sum_{j=M+1}^{D} u_j^T S u_j$$

where S is the empirical data covariance matrix.

Theorem 2.2: Minimum-Error PCA Objective

Let S be the data covariance matrix:

$$S = \frac{1}{N} \sum_{n=1}^{N} (x_n - \bar{x})(x_n - \bar{x})^T$$

Then the average reconstruction error from projecting each x_n onto the top M components is:

$$\mathcal{J} = \sum_{j=M+1}^{D} u_j^T S u_j$$

To minimize this error, PCA chooses $\{u_1, \dots, u_M\}$ as the top M eigenvectors of S, corresponding to the largest eigenvalues.

References:

- 1. Linear Algebra Notes Chapter 2: Vector Spaces [Link]
- 2. Gilbert Strang, Introduction to Linear Algebra, 5th Edition Vector Space Examples and Basis
- 3. Sebastian Raschka, Lecture Notes on Regularization and PCA [Link]
- 4. Wikipedia: Principal Component Analysis [Link]
- 5. CMU Deep Learning Reading on PCA [Link]
- 6. YouTube: PCA Intuition and Step-by-Step Derivation [Link]
- 7. Gram-Schmidt Orthonormalization [Link]
- 8. Setosa.io: Interactive Visual Explanation of PCA [Link]