
EECS 598-006: Prediction, Learning and Games Fall 2013

Lecture 2: Weighted Majority Algorithm
Lecturer: Jacob Abernethy Scribe: Petter Nilsson

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

2.1 Course announcements

• A GSI will (likely) be recruited to the course.

• For now, office hours are Tuesday 1pm-2pm.

• Homework 1 is about to be posted, due 9/23. Group work is encouraged for homework.

2.2 Predictive sorting revisited

Lecture 1 ended by studying the problem of predicting the outcomes of games played among k teams, where
a game between two of these k teams is played in every round. Assume the outcomes ys, s = 1 . . . t − 1 in
t− 1 rounds have been observed for pairs of teams (i1, j1), . . . , (it−1, jt−1). Further assume that there exists
a perfect ranking π∗ ∈ Sk determining the outcomes ys of each game. Without loss of generality (WLOG)
assume π∗(is) < π∗(js) for s = 1, . . . , t− 1. In round t, the pair (it, jt) is observed.

The Halving algorithm makes a prediction ŷt of the outcome yt by comparing the number of members of
the following sets:

C<t := {π ∈ Sk | π(is) < π(js) ∀s = 1, . . . , t− 1 and π(it) < π(jt)} , (2.1)

C>t := {π ∈ Sk | π(is) < π(js) ∀s = 1, . . . , t− 1 and π(it) > π(jt)} . (2.2)

The prediction follows majority vote, i.e.

ŷt =

{
< if

∣∣C<t ∣∣ ≥ ∣∣C>t ∣∣ ,
> otherwise.

(2.3)

The naive way to determine ŷt is to enumerate Sk and eliminate permutations that are inconsistent with
past outcomes. This is however not efficient since |Sk| = k!.

The problem of computing the quantitites |C<t | and |C>t | is in fact #P -hard. The outcomes can be
recorded in a directed acyclic graph (DAG), and the problem is equivalent to finding the number of topological
orderings of that graph, which is known to be #P -complete [1].
(Challenge Problem) Continuation from last lecture: Is the problem of determining the largest of these
two sets also #P -complete, or is there an efficient algorithm?

2.3 Review of basics in Convex Analysis

Definition 2.1 A function f : Rn → R is convex if and only if any of the following conditions hold:

(a) For all x, y ∈ Rn,
1

2
f(x) +

1

2
f(y) ≥ f(

x+ y

2
). (2.4)

2-1

Lecture 2: Weighted Majority Algorithm 2-2

(b) For all x, y ∈ Rn and α ∈ [0, 1],

(1− α)f(x) + αf(y) ≥ f ((1− α)x+ αy) . (2.5)

(c) For all random variables X, Jensen’s inequality

Ef(X) ≥ f(E(X)) (2.6)

is satisfied.

Remark 2.2 As seen in (2.6), Jensen’s inequality can actually be used to define convexness.

(Exercise) Prove that (2.4)-(2.6) are equivalent.

Proposition 2.3 A sufficient condition for f to be convex is that

∇2f � 0, (2.7)

where � 0 stands for positive semi-definiteness, i.e. ∇2f has non-negative eigenvalues.

Proposition 2.4 If f is convex and differentiable, then for all x0, δ ∈ Rn,

f(x0 + δ) ≥ f(x0) + δ · ∇f(x0). (2.8)

Remark 2.5 Equation (2.8) could also be used to define convexness. However, in the case of non-differentiability
the concept of subgradient is required.

2.3.1 Approximations

The following inequalities will be used in the course. The functions are plotted in Figure 2.1 for a visual
interpretation of these inequalities.

(1) Upper bound on the exponential function obtained by linearizing ex in 0:

ex ≥ 1 + x. (2.9)

(1’) Lower bound on the logarithm function, derived by using the log operator on (2.9):

log(1 + x) ≤ x. (2.10)

(2) This inequality follows from the convexity of f(z) = eαz and is obtained by inserting 0 and 1 as
evaluation points in (2.5):

eαx ≤ 1 + (eα − 1)x for x ∈ [0, 1]. (2.11)

(3) Finally, a harder inequality:

− log(1− x) ≤ x+ x2 for x ∈ [0, 1/2]. (2.12)

(Challenge Problem) Logarithm inequality : Prove the inequality (2.12).

Lecture 2: Weighted Majority Algorithm 2-3

−1 −0.5 0 0.5 1
0

0.5

1

1.5

2

2.5

3

x

f
(x

)

f(x) = ex

f(x) = 1 + x

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

x

f
(x

)

f(x) = log(1 + x)

f(x) = x

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
0.5

1

1.5

2

2.5

3

3.5

x

f
(x

)

f(x) = ex

f(x) = 1 + (eα − 1)x

−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

x

f
(x

)

f(x) = −log(1− x)

f(x) = x+ x2

Figure 2.1: Plots of the functions in the inequalities (2.9) - (2.12).

Lecture 2: Weighted Majority Algorithm 2-4

2.4 Back to Online Learning

The drawback of the Halving algorithm presented last time is the strong assumption that a perfect ‘expert’
exists. How can this assumption be removed? The answer is to use weights for the ‘experts’, based on past
performance. This leads to the Weighted Majority Algorithm (WMA) outlined below. This algorithm
was first proposed 1994 by Littlestone and Warmuth in [2].

Algorithm 1: Weighted Majority Algorithm

input: N experts predicting the outcomes, a parameter ε > 0.
w1
i ←− 1 for all i = 1, . . . , N (weights initialized to 1 for all experts)

for rounds t=1,2,. . . do
f ti ∈ {0, 1} (obtain prediction of expert i, i = 1, . . . , N)

ŷt ←− round

(∑
i w

t
if
t
i∑

i w
t
i

)
(compute prediction of WMA)

Outcome yt is revealed

wt+1
i ←− wti(1− ε)1[f ti 6= yt] (expert weights are updated according to their predictions)

end

The function round : [0, 1]→ {0, 1} above is defined as

round(x) =

{
1 if x ∈ [0, 1/2],

0 if x ∈ (1/2, 1].
(2.13)

Theorem 2.6 For all experts i, it holds that

MT (WMA) ≤ 2 logN

ε
+ 2(1 + ε)MT (expert i), (2.14)

where MT (WMA) (resp. MT (expert i)) is the number of mistakes of the algorithm (resp. expert i) up to
round T .

Proof Idea: The proof is similar to the that of the bound on the Halving algorithm, but instead of
‘remaining number of experts’, ‘total weight’ is used.

Proof: Define total weight at time t as

Φt =

N∑
i=1

wti . (2.15)

Evidently, we have that
Φ1 = N. (2.16)

Furthermore, it holds that
ΦT ≥ wTi = (1− ε)MT (expert i), (2.17)

since the weight of expert i will have been decreased MT (expert i) times.
Suppose that the algorithm makes a false prediction at time t. Then more than half of the weight Φt

must have been on experts who made false predictions. Thus, their weight would decrease by a factor 1− ε.
This leads to the following result:

Lemma 2.7 If the algorithm makes a mistake at time t, the following inequality holds:

Φt+1 ≤ Φt

(
1− ε

2

)
. (2.18)

Lecture 2: Weighted Majority Algorithm 2-5

(Exercise) Prove this lemma rigorously.
By repeatedly applying the lemma,

ΦT ≤ Φ1

(
1− ε

2

)MT (WMA)
. (2.19)

Using (2.16), (2.17) and (2.19) one then obtains

(1− ε)MT (expert i) ≤ N
(

1− ε

2

)MT (WMA)
. (2.20)

Apply the negative logarithm to get

− log(1− ε)︸ ︷︷ ︸
≤ ε+ ε2

MT (expert i) ≥ − log(N) +
(
− log(1− ε

2
)
)

︸ ︷︷ ︸
≥ ε/2

·MT (WMA), (2.21)

where the new inequalities result from using (2.12)1 and (2.10), respectively. By inserting these and rear-
ranging the terms, the inequality stated in the theorem is derived.

2.5 Next lecture

The Weighted Majority Algorithm will be discussed further in the next lecture; a variant of the
algorithm will be presented which gets rid of the factor 2 in Theorem 2.6.

References

[1] Brightwell, G., and Winkler, P. Counting linear extensions is #p-complete. In Proceedings of the
twenty-third annual ACM symposium on Theory of computing (New York, NY, USA, 1991), STOC ’91,
ACM, pp. 175–181.

[2] Littlestone, N., and Warmuth, M. The weighted majority algorithm. Information and Computation
108, 2 (1994), 212 – 261.

1To use this inequality, ε must be less than 0.5 (or actually 0.68)

	Course announcements
	Predictive sorting revisited
	Review of basics in Convex Analysis
	Approximations

	Back to Online Learning
	Next lecture

